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The antiferrodistortive phase transitions of some perovskite crystals, driven first order by
strongly cubic order-parameter fluctuations, are shown to become continuous at finite aniso-
tropic stresses favoring ordering of one order-parameter component. The associated critical
and tricritical behavior will be that of one of a spectrum of uniaxial Lifshitz systems, its pre-
cise character reflecting the form of the anisotropy in the soft-mode dispersion. Our predic-
tions are in substantial accord with recent experiments on RbCaF,.

In a recent paper Domany, Mukamel, and Fish-
er! considered a variety of systems whose phase
transitions, continuous within mean-field theory,
are driven fivst ovder by cvitical fluctuations.
They showed that, in certain cases, a continuous
phase transition can be reestablished by inducing
an appropriate anisotropy, which lowers the ef-
fective number » of components of the order pa-
rameter. In this Letter we show that particular-
ly striking realizations of this process are to be
found among those perovskite crystals (e.g.,
KMnF,,? RbCaF,,® KCaF,,*...) which undergo a
weakly first-order cubic-to-tetragonal phase
transition, associated with the instability of an
n = 3-fold degenerate R, (zone boundary) mode.
The symmetry-breaking mechanism is realized
as an appropriate anisotropic stress which lifts
the degeneracy of the R,; mode, and promotes a
phase transition whose effective order-parameter
dimensionality is n=1. The particular richness |

of the associated phenomena resides in the stvong-
ly cubiccharacter of the order-parameter fluctua-
tions in these systems, as a result of which the
tricritical point they will exhibit, at a critical
value of the stress, and the continuous phase
transition, occurring for larger stresses, should
be those of a uniaxial Lifshitz system.® The as-
sociated exponents are quite different from those
of the simple d =3, n=1 (Ising) system. In par-
ticular, expansion techniques® yield for the tri-
critical Lifshitz order-parameter exponent 8, a
value in the range % to ¥, in marked contrast to
the Ising tricritical value 8, =1, and in good ac-
cord with recent measurements on anisotropical-
ly stressed RbCaF,,” suggesting that anisotropi-
cally stressed perovskites may prove to be the
first clear realizations of Lifshitz-type behavior.

Our’ analysis is based upon the # =d-dimension-
al Ginzburg-Landau-Wilson effective Hamiltonian
of cubic symmetry,*®
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where [3=(21)"¢/d% over the range 0<|{| <A.
The strongly cubic character of the order-param-
eter fluctuations, manifested in the distinctive
diffuse x-ray scattering streaks'® observed in

the perovskites cited above, is expressed in the
coefficient Uz,a(a), describing the dispersion of
the soft-mode branch associated with rotations

of the perovskite octahedra about the o axis!!:

Uz,a(a) =roc+ql,a2+aqa2L’ (2)

with v, =A(T =T,), and ¢, ,°=¢®~q,*. The ex-
treme flatness' of the dispersion of the ath
branch, along the o axis of reciprocal space, is
reflected in the typically very small values of a

[close to 0.01 for both KMnF, (Ref. 13) and RbCaF,
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I(Ref. 14)] yielded by fitting the form (2)** to in-
elastic neutron-scattering data, with the assump-
tion that the dispersion is predominantly guad-
vatic in q, (i.e., that L=1). However, it is quite
conceivable that the dispersion is better modeled
by the form (2) with a larger value of L—the re-
sults of experiments’ on RbCaF, are immediate-
ly comprehensible if this is the case—and so we
shall carry out our analysis for general L> 2%

The critical behavior is exposed by a renormal-
ization-group treatment, taking careful account
of the parameter ¢ which, in the language of Fish-
er,'” constitutes a “dangerous irrelevant” vari-
able: momentum-space integrals of the form
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[4lU,,,@)]"2 diverge (for r,, a~0) as a®@~572
and one must construct recursion relations for
the scaled variables a=ua@ 5/2 §=va@-5Y2, At
leading order the results may be written in dif-
ferential form, as

dii/dl = Le jii ~ AB[(n+4)a® + 6a5 ] +. . . (3)
b

)

where B is a constant, ¢’ is the renormalization-
group rescaling factor, €,=d_ ~d, andd =5-1/
L is the critical dimensionality for the problem.
These equations have no stable fixed point for n
=d, implying'® a first-order transition, in accord
with previous analyses'®?° of the Hamiltonian (1),
in the specific case L =1, The first-order char-
acter of the transition originates in the strongly
anisotropic fluctuations, under whose influence
the lines of Hamiltonian flow are driven into a
regime [of large negative v(l): cf. Eq. (4)] where
the mean-field stability criterion«(l) +v(1)>0 is I

di/dl=Le b —-4B(2i+ 30)%+. .. ,
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where the effective coupling constant ¢ is giv-
en by*

UesfFU TV = sza[Uz.z(i)]'z,

while its rescaled counterpart @ s;=u.ca® 32
evolves, under the renormalization group, ac-
cording to the single recursion relation to which
Egs. (3) and (4) reduce when =1,

dﬁeff/dl = Lecﬁeff - 36Bﬁeff2.

(6)

()

Since the integral in Eq. (6) is 2 monotonically
decreasing function of the mass 7,, and thence of
the applied stress, the effective coupling constant
u.¢¢ Will necessarily be positive at large stresses
(we assume that the combination of bare coupling
constants # +v is positive®), Thus, for appro-
priate® large stresses the system will exhibit a
continuous phase transition characterized by the
single stable fixed point of (7), to which the lines
of Hamiltonian flow have access when ¢ > 0.
This fixed point will be of the uniaxial Lifshitz
type with critical exponents whose expansions®®
in €, may be recovered from (7) (together with
the linearized recursion relation for #¢;=7¢¢/
a). Specifically,

1
Bcz-lé— -31-604' O(€02)=m+0(€02)'
[~

In the case of the simplest Lifshitz point® (for
which L =2) extrapolation of the expressions (8)

(@)

violated.?®?' This behavior contrasts with that
expected in systems (such as SrTiO,) where the
anisotropy is less pronounced,?® producing only
a very slowly decaying correction® % to an n
=d-component Heisenberg fixed-point behavior.
Consider now the effect of an applied stress,
which couples through the elastic coordinates to
the order-parameter degrees of freedom: A ten-
sile uniaxial stress along the direction [100] (or,
equivalently a compressive biaxial stress along
[010] and [001]) lifts the degeneracy of the soft
mode, making », <7, =73 [Eq. (2)], and thus fav-
oring fluctuations of the coordinates @,(q) de-
scribing rotations of octahedra about the [100]
axis.?® For sufficiently large stresses (r, <7;)
the effects of the noncritical fluctuations (about .
the remaining axes) may be treated within per-
turbation theory?*: their role is simply to dress
the interactions among the critical coordinates
@,(q). The critical behavior of the system is then
described by the » = 1-component effective Ham-
iltonian

(5)

to d =3 (where €,=3) yields values for g, of § or
3, the difference reflecting the ambiguities in-
herent in all such expansions. For Lifshitz points
of higher order (L >2) B, will be even smaller,
coinciding in the limit L -« with the d =2 Ising
value B8,=3.%"

For vanishing stress, then, the phase transi-
tion is first order; for large anisotropic stress-
es it is continuous, and characterized by an or-
dinary Lifshitz critical point. There will there-
fore exist a particular stress at which the tran-
sition becomes continuous: This stress thus lo-
cates a tvicvitical Lifshitz point. The borderline
dimensionality in this case isd,=4 - 1/L, and
expansions in €,=d, —d give®

+0(€,?). 9

1
_1_1 a1
Bt'4-‘1€t+0(€t) 4(1+€t)

For the case L =2, extrapolation to d =3 (when €,
=13) gives B,=% or &. For large L, B, will ap-
proach the d =2 tricritical Ising value 8,~0.04,2®
The value 8,~ ¢ observed’ in RbCaF, is in good
accord with the L =2 tricritical Lifshitz result,
although other interpretations of this observation
are possible. A Lifshitz behavior of still higher
order (L >2) cannot be ruled out, but seems less
likely a priori. Alternatively, the value of 8, ob-
served might reflect the intermediate behavior
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expected for a system exhibiting a crossover
from a two-dimensional to a three-dimensional
tricritical fixed point: Such a crossover would
arise if the dispersion (2) is characterized by a
small but still dominant term, quadratic in g,
(L=1, a«<1). However, the observations give
no hint of crossover, suggesting that the behavior
is dominated by a single fixed point, for which
the L =2 uniaxial Lifshitz tricritical point seems
the most plausible candidate. Nevertheless, this
issue will be convincingly resolved only once the
form of the soft phonon dispersion, in the rele-
vant materials, is known with greater accuracy
—a challenge to inelastic neutron and diffuse x-
ray scattering techniques.

In summary, we have shown that a class of
perovskite crystals should not only display the
anisotropy-induced tricritical point predicted by
Domany, Mukamel, and Fisher,! but also a vari-
ety of hitherto unobserved Lifshitz multicritical
points.
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The main point to be stressed is that 8, for the Lifshitz
point is farther away from the mean-field value, and
therefore smaller, than its usual critical counterpart.

B:. We hope that this Letter will stimulate better nu-
merical calculations of these exponents.
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We have investigated the Oh to D4h18 structural phase transition in RbCaF; under near—
[100] stress o, by monitoring the electron-paramagnetic resonance lines of Gd®* (S= —)
on a Ca’* site. We find that the first-order transition at zero stress becomes second
order at o, =1,9+ 0.3 kg/mm? and Ty=195.3+0.1 K. At this tricritical point, and up to
0=4.8+0.3 kg/mm?, the exponent of the temperature dependence of the rotational order

parameter is g=0,18+0.02.

The renormalization-group theory!'? has re-
cently been used to investigate the topology of
phase diagrams near complex multicritical
points.® In structural phase transitions (SPT)
such multicritical points result on application of
external stresses.® Bicritical and tetracritical
behavior is seen or predicted under uniaxial
stresses o if the transition is of second order
at 0=0. The prototypes of the latter topological
variety are SrTiO, and LaAlO,, which are of
second order.® Other known transitions of the
SrTiO,-type O,' to D,,'® are of first order as
in KMnF, (Ref. 6) and RbCaF,.” In these two
crystals the dispersion of the soft antiferrodis-
tortive R,; mode is flat and nearly the same from
the R towards the M point of the Brillouin zone
with a = fwg?/ &® ~0.013 £0.09 as discussed by
Rousseau, Nouet, and Almairac.® The discon-
tinuities of the order parameter measured in
these two cases are relatively small, i.e., the
transition is almost second order. Thus, it has
been conjectured® that such transitions are forced
to become first order only, due to critical cubic
fluctuations, the mean-field theory predicting a
second-order transition. However, for fluctua-
tion-induced first-order transitions to occur, «
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has to be quite small because SrTiO, is second
order with @ ~0.036+0.012.8

Recently Domany, Mukamel, and Fisher! de-
rived theoretically that fluctuation-induced first-
order transitions may be restored to a continuous
transition on application of a symmetry-breaking
uniaxial field. In this Letter we report on the
first successful experiment bearing on this effect
in a SPT. However, in contrast to magnetic
cases'! with isotropic dispersion, in the present
case of RbCaF, with @ =0 the situation is more
complicated due to possible Lifshitz behavior.!?
Aharony and Bruce'® (AB) have investigated the
properties of an anisotropic cubic Hamiltonian
with @ =0 in detail. In our case of a tetragonal
stable phase for T<7T_,at ¢=0, AB found that one
can only reach a tricritical point if the symmetry-
breaking stress induces a one-dimensional order
parameter (n=1). The system will then show
Lifshitz tricritical #=1 character if « is suffi-
ciently close to 0, otherwise normal tricritical
character. Our experiments cannot decide be-
tween the two.

Electron paramagnetic resonance (EPR) is
known to be one of the most sensitive methods of
investigating the order parameter in SPT. Thus,

465



