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Determination of the Hamiltonian in the Presence of Constraints
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The ambiguity in the Hamiltonian for systems with constraints is discussed, and a counter
example is provided to a conjecture of Dirac, which has led previously to the identification of
the system Hamiltonian as the extended Hamiltonian, HE.

'

The conjecture fails and Hz also
generates the wrong canonical equations; Dirac's test for identifying the Hamiltonian, how-

ever, leads to correct results for the example.

In a well-known work, ' Dirac has extended the
applicability of Hamiltonian methods to systems
for which the rank of the N xN matrix,

where I. is the Lagrangian for the system, is
less than ¹ In this case the equations of the
generalized momenta,

p„=BL/sq„, n= 1 to N, (2)

produce M & 0 functionally independent relations,

y„(q, p) = 0, m = 1 to M, (3)

Hr -H+ Q„y„u (4)

H being the usual Hamiltonian and the u the un-
determined multipliers to Eqs. (3). In Eq. (4)"="has been used for strong equality. Equations
(3) are primary constraints, so called because
they derive directly from Eqs, . (2); they are dis-

where Dirac's symbol for weak equality has been
used. The Hamiltonian equations are found by
the standard methods of the calculus of variations,
with the conditions, Eqs. (3), taken into account
by the method of Lagrange multipliers. This
produces the total Hamiltonian,

tinguished from the secondary constraints,

g~(qqp) Oq 0=1 toKq

which derive from an algorithm of consistency
requirements that all the constraints of the for-
malism be time independent, viz.

y, =(q„Hr)~0, j=1 to M+K-=J'.

The J constraints fall into two classes, first
class and second class, every first-class con-
straint having vanishing Poisson bracket with
each of the remaining J—1 constraints. Follow-
ing Dirac, ' one can derive a general form for
H~, arriving at

Hr H + QpPpvp~

where II' is a certain first-class function of the
q's and p's (i.e. , it has vanishing Poisson brack-
et with every first-class constraint), the v~ are
undetermined arbitrary functions of the time,
and $y~) is the complete set of first-class pri-
mary constraints.

The presence of the v~ in Eq. (7) introduces a
novel feature: The infinitesimal changes (5q, 6p)
of the canonical variables, from time t to /+at,
are v~ dependent under the action of H~. Hence,
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the correspondence of a set of values of the (q, p)
to a physical state cannot be one to one, if the
characterization of a physical state be required
to be free from undetermined arbitrary functions.
Proceeding from considerations of this kind and
based upon the form of v~ dependence that actual-
ly results, one can identify a set of quantities,
which as generators of infinitesimal canonical
transformations do not lead to a change of phys-
ical state. These are the first-c1.ass constraints,
p, needed on the right-hand sides of the equa-
tions

(8a)

Hr -H~ = H'+ L', P, v, . (9)

I will refer to Eqs. (8) as Dirac's test.
Dirac has conjectured that all the first-class

secondary constraints belong to the set of gen-
erators which do not change the state. ' With the
assumption of completeness, this leads to a de-
termination of the Hamiltonian as

(8b)

where the indices g, g', andy" extend over a
minimal range such that the complete primary
first-class subset is included. Dirac has pro-
posed, accordingly, that H~ should be replaced
by a "generalized" Hamiltonian, H„ to generate
the canonical formalism. To obtain H~ the sum-
mation appearing in Eq. (7) must be extended to
include all those generators which do not change
the state, with all the coefficients arbitrary. As-
suming that the y, exhaust that collection, this
requirement leads to

produces the Euler-Lagrange equations

z„=0, 0=—'z„', i„=y„z„, n =1 to N, (12)

p~ =BI /sy„=0, n =1 to N, (13)

and the total Hamiltonian has N arbitrary func-
tions, n„,

H& = Z.(p.„p.„-'y. z.')-+ Z.P.„~.
The consistency conditions to Eqs. (13) are

p, ={p»Hr) ~2z. „2=0, n=1 to N,

which give additional secondary constraints,

z„=0, n=1 to N.

(14)

(16)

The algorithm terminates after the next step,
which gives N more secondary constraints,

z„"-(z„,Hr) ~P„"-0, n=1 to N.

All 3N constraints are first class. Noting that

(17)

z„'=0, n =1 to N,

as an immediate consequence of (16), we find
that

(18)

H =H'+Qp, e„,
where

H'= Z.P.„P.„.

(19a)

whose solutions are those of uniform x motion,
confined to the x-y plane (z =0), and with y(t) re-
maining undertermined, for an N-particle sys-
tem. So the system corresponding to 1. is con-
sistent.

There are N primary constraints,

Hr -Hz = H'+ g, y, e„ (10) Since the expressions (8a) and (8b) are

where now the summation extends over all the
first-class primary and secondary constraints,
and all the v, are arbitrary. It is customary to
refer to H~ as the extended Hamiltonian.

I will give an example with the following prop-
erties: (i) If the form on the right-hand side in
Eq. (10) is used, not all the t, are necessarily
arbitrary. (ii) Dirac's test leads to an Hc differ-
ent from Hz. (iii) Together with the constraints,
the canonical equations from the H~ determined
from Dirac's test imply precisely the original
Euler-Lagrange equations; those from H~ do not.
(iv) The secondary constraint terms in H~ are
fixed uniquely.

Now for the example. The Lagrangian

L = L(x,y, z, x,y, z) = Q„(x„z„+—,
' y„z„')

4,„,p,„,)=0,

(p, , H'j=o,
(20a)

(20b)

H = Q„p„u„+Q„p,„v„+Q„z„~„, (22)

where n„and u„are 2N additional arbitrary
functions.

for all n, n', none of the first-class secondary
constraints appears on the right-hand sides, and
the generalized Hamiltonian from Dirac's test is
the same as Hr (in this example), viz.

HG H'+ Q„p~ e„. (2

Equations (16) and (17) give all the secondary
first-class constraints; so the extended Hamil-
tonian is
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The canonical equations from H~ are given by
0
zn pg„t yn ~nt zn 0

p„~0, p~=0, p, =0,

which, together with the 3N constraints, cor-
rectly express the full content of Eqs. (12). The
canonical equations from H~, however, are

(23)

n nP ~n nP n

(24)p„"-0, p„„=0, p, ~-m„,

which imply arbitrary time dependence of all the
unconstrained variables. Equations (24), together
with the constraints, do not imply Eqs. (12). Fi-
nally, we note that the first-class secondary con-
straints, z„and p„, are infinitesimal generators
for translations of p, and x„, whose time depen-
dence is determined from the dynamics, and
which does correspond to a change of physical
state.

Clearly the 3N arbitrary functions in Eq. (22)
are not needed. %orse, "gauge freedom" has
turned to license since none of the dynamical in-
formation in Eqs. (12) survives there with the
journey from the Lagrange formalism. H~ is the
wrong choice for the Hamiltonian. The form in
Eq. (21) has the right properties, however. If
we proceed now in the spirit of Dirac's treatment
of the electromagnetic field' and also of the grav-
itational field, ' the second term in Eq. (21) can
be dropped, for there was no dynamical content
to the y motion to start with and the term in
question "commutes" with H'. The motion then
is played out on a reduced, 4N-dimensional
phase space, with the (y, p, ) sector gone.

Thus, the determination of the Hamiltonian for
a system with constraints can be seen to proceed
in two steps. In the first, a suitable H~ is found;
in the second, more or less optional, step, un-
needed variables are dropped, such as the (y, p, )
set in the example. Dirac has stressed, in re-
gard to step one, the importance of passing from
H~ to H~ so that the full gauge-transforming
power of the Euler-Lagrange formalism will be
realized in the canonical formalism. The exam-
ple of the present paper shows that it also is
necessary to be sure, in step one, that the ca-
nonical equations guarantee the original Euler-
Lagrange equations, as this feature otherwise
might be lost.

There is an important observation to be made
concerning the definition of the constraint func-
tions, q, , selected to implement the consistency
conditions. Equation (16) was chosen to express

the result of Eq. (15); thus the quantity to which

Eq. (6) was (again) applied was taken to be z„,
resulting in Eq. (17). Some other power of z„,
e.g. , z„', might have been selected instead. The
choice made affects the equations from which H~
and II~, both, are to be determined. More gen™
erally, one could choose z„, for any n& 0. The
same arbitrariness exists also for the primary
constraints; one might choose p,„"and apply Eq.
(6) to that. With choices of this kind one has,
e.g. ~

(z„",e,) nz„" '(z„,e,'I. (26}

If n&1, y= 0 does not express a condition since
z„' already vanishes on the constraint hyper-
surface; while if o. &1, q is undefined on the con-
straint hypersurface. Thus the choice of the text,
which is n =1, is singled out as the only meaning-
ful one, n4 1 being ill defined or empty. The
choice n =1 is also in the spirit of Dirac's origin-
al prescription for the definition of weak equal-
ity, ' that p"- 0 express the fact that under small
variations of the coordinates, by an amount 0(z),
y be O(e). We can accomplish this result more
formally by requiring that at the xth stage of the
algorithm the functions y& be chosen so that,

det ll&e,„(n)/&n, „ ll «,

P. A. M. Dirac, Can. J. Math. 2, 147 (1950), and
Proc. goy. Soc. London, Ser. A 246, 326 (1958).

See, for example, P. A. M. Dirac's little book, Lec-

g„,g„'=1 to J„=m+Z„,

where g denotes the 2N g's and p 's collectively,
and the g, are J„of the 2N coordinates. The
primary subset' can be taken to be that for r = 0,
with K, = 0; while at the end of the process J„-J
= M+ K, as in Eq. (6). In addition, the determi-
nant in (26) should be required not to be singular
on the hypersurface defined by the y;, at each
stage.

It will be observed, incidentally, that the choice
e =1 also can affect the Hamiltonian through H'.
Thus Eq. (16) gave Eq. (18), so that Hr in Eq.
(14) was simplified to the form given in Eqs. (19}.

Finally, another example with the same fea-
tures as that studied above is defined by the La-
grangian,

L = Q„(x„z„+2y„z„'). (27)

The analysis easily proceeds along similar lines.
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tubs on Quantum Mechanics (Yeshiva Univ. Press,
Neve York, 1964).

SP. A. M. Dirac, Proc. B,oy. Soc. London, Ser. A

246, 333 (1958).

4The condition, (26), is satis6ed directly for the

primary constraints in the treatment given by E. C. O.
Sudarshan and ¹ Mukunda, Classical Dynamics: A

Modern PersPective (Wiley, New York, 1974), Chap. 8.
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I present a c1ass of vacuum metrics with a pair of commuting Ki11ing vectors which do

not possess the property of orthogonal transitivity. The solution is Petrov type II with expan-

sion-, bvist-, and shear-free geodesic rays and includes the van Stockum exterior metric as

a limiting case.

Recently" there has been considerable prog-
ress in generating new vacuum metrics with two

commuting Killing vectors from the familiar ones

by utilizing the hidden symmetry properties of
the reduced field equations, discovered by Ger-
och. ' However, an element of this group acting
on a vacuum metric yields a new one preserving
the two Killing vectors (," (a, b, c = 0, 1) if (and

in general only if) the orbits generated by them

are orthogonally transitive. The two scalars

c.= e"""&0priv ~a p:.
then vanish everywhere and the metric can be ex-
pressed in a canonical 2 x2 block diagonal form.
The most physically interesting class of solutions
with a two-parameter Abelian group of motion

are the stationary azisymmetric gravitational
fields. It is well known4 that the stationary axi-
symmetric space-times satisfying the vacuum

field equations R&„=0 [or more generally the re-
lation R„,g,"=R,'(z)$»] in a region including a
portion of the symmetry axis are orthogonally
transitive.

In this Letter I present a class of vacuum so-
lutions with two commuting Killing vectors $,"
whose orbits do not admit orthogonal two-sur-
faces and therefore lie outside the scope of the
Geroch-Kinnersley program. This indicates that
the condition c,= 0, while not very restrictive,
does exclude' some (possibly interesting) vacuum

solutions which admit a pair of commuting Killing
vectors. We define the quantities f„and f"by

f.t, = $.„&g4, f.p
f"= &:

The vacuum field equations assume a readily in-
tegrable form when the two constants cp and cy

satisfy the additional condition

f '~c, c =0.

By choosing a suitable linear combination of these
two vectors we can set c,=0, cp0. Vfhenr'
= —det(f„)tconst, the solution turns out to be

+2du(rdq+m' ' 'dz)-r ' '(dr'+dz') (4)

where P(r, z) is an arbitrary solution of the three-
dimensional Laplace's equation in cylindrical co-
ordinates (comma denotes ordinary differentia-
tion):

and n = -', c,. The metric is singular at r = 0; the

square of the Riemann tensor, viz. , R~~,R"" ',
diverges as r ' as r - 0. It is type II in the Pet-
rov-Pirani classification and the (doubly degen-

erate) propagation vector, which is also a Killing

vector, is in either case tangent to a congruence
of expansion-, bvist-, and shear-free null geo-
desics (K = p = v = 0 in the Newman-Penrose nota-
tion). When o. -0 it reduces to the van Stockum

exterior metric which seems to be the only non-

diverging (p = 0) type-II vacuum solution known

in the literature. ' When 0.& 0, it is a redundant

parameter and may be set equal to unity by re-
scaling the Killing vectors. The solution can be
derived systematically using the methods of Ref.
6. This derivation and further details will be
given elsewhere.
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