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A Gt to the integrated rate and 37f mass distribution of the decay mode 7+-7I+x+~ v~ has
been performed using hard-pion current algebra, including the approximate imposition of
unitarity. %e find that the existence of an A.

&
with low mass (mz = 1.1 GeV) and narrow width

II'~'" =150 MeV, I (A, -pu) =100 MeVl is consistent with the data if there is an appreciable
non-pu contribution to the matrix element (3sIA„IO). Such a contact term is predicted to exist
by current algebra.

The recent observation" of the decay 7'
-vr'm'm v, and measurement of the resulting Sm

mass distribution provides an ideal laboratory
for study of the axial-vector matrix element
(Sv IA„I0) for timelike (momentum)'. Because
the theoretical calculation' of this matrix element
is based on detailed application of current alge-
bra and partial conservation of axial-vector cur-
rent away from the soft-pion limit, and depends
sensitively on the parameters of the A, meson,
one may ostensibly confront these calculations
with experimental data and hope to learn more
about hard-pion current algebra (HPCA) and the
A, meson. There are caveats to this goal: The

dI g GF cos8q (rpl ~ -s) 7f

dEs K2 m, '

xI&

experimental situation is unclear because of poor
statistics, and also, there are ambiguities in the
theoretical calculation of the matrix element.
Both of these problems will be clarified in the
following text, where we sketch our calculation,
leaving details to a forthcoming publication; the
principal results are summarized in the conclud-
ing section.

The matrix element for the decay 7'-m'm'm 7,
is given by

K = (G„cos8,/~2)I „H",

where t.
&

= u„y&(l —y,)u, and H& = (v's'v I(A„'
+iA„') I0). The differential decay rate dl'/4M„
may then be written

where s =P'=M„'. The first term in (2) gives
the decay rate into a 1' final state, and the sec-
ond into a 0 .

p'g' cont~ibution, —In this first stage of the
calculation, we shall assume that the final state

is entirely p'v'. The helicity amplitude defined
in a Cartesian isospin basis, i.e.,

&„'"' ""= &p'(h, &) '(q) I&„"(0)I0&,

1979 The American Physicai Society 339



VOLUME 42, NUMBER 6 PHYSICAL REVIEW LETTERS 5 I'EBRUARV 1979

Fo =B +R/D~, (5)

while in the Lagrangian' and Ward-identity' ap-
proaches

Fo= tB(m~~ -s)+R]/Dg. (6)

In the above equations, B and JI' are constants,
and D~ =m&' —s -il &m&, with m& the mass and
T'~ the total width of the A,

The choice of E, is crucial, because it gives
the overwhelmingly dominant contribution to the
decay rate Whi.le the two forms, Eqs. (5) and

(6), are identical for I'„=0, there are substan-
tial differences in the region s=rn„+ I'„ for 1 „
+ 0, even for a narrow A, (I'„=100 MeV)! Qn the
basis of unitarity, we have chosen Eo to be given

by Eq. (6). More precisely, the linear elastic
unitaxity relation for the S- and D-wave ampli-
tudes F~ corresponding to Eq. (4), i.e. ,

Immi S~L I
TAMIL, p iFgt~ (7)

is satisfied to better than 95%%uo for the dominant
1' S-wave amplitude. We obtain this result using
a factorizable p-m scattering amplitude T~.~
= (ai, ali/p)/D„, and HPCA parameters in the
range of interest. ' The 1' D-wave and 0 P-wave
amplitudes violate unitarity, but this fact is of
little import since they contribute less than 5%%uo

of the decay rate at the M„'s under considera-
tion. On the other hand, for the dispersive form,
Eq. (5), there are 10(I%%uo violations of unitarity by
the dominant 1+ S-wave amplitude near the reso-
nance even for a narrow A,. Furthermore, in
the presence of inelastic channels (e.g. , em), the.
form (6) for Fo is at least consistent with unitar-
ity, whereas (5) gives a substantial imaginary
part for TfpF in the vicinity of the resonance, in
violation of unitarity.

Thus, we obtain E„.E„and E, from Refs. 4
or 5. These amplitudes depend on the param-
eters g~ and g„(defined by (p'IV„' I 0) =g~&"e„p,
(A, ' IA „'I 0) =g„6"e„");X„ is the anomalous mo-

has a general expression

E (A.)

=F,e„~(X)+F p e~(X)(h-q) +F p e~(&)p (4)

where p =0+ q. An expression analogous to (2) for
7'-p m'v, may then be written in terms of the E;,
and it is these amplitudes which are directly cal-
culable from various models of HPCA. ' ' The
predictions of the various models are essentially
the same for the amplitudes E, and E,. However,
in the dispersive approach"

ment of the A» defined in Ref. 5 (and related to
6 of Ref. 4 by &„=1+5); and m„and I'„which
have been defined earlier. The first Weinberg

sum rule' is used to express g~' in terms of
gP29 mp29 and EF29 and gp2 ls written as gp2
=s'(2m ~'F, '). Experimentally, z' = 1.3 + 0.2. Fi-
nally, the p width can be calculated in terms of
all these parameters, and its known value places
a constraint on X~, z', and m„. The amplitudes
Ep Qj and E, then depend on the parameter s z
m„, and I"„, while I"(A, -p7T) depends only on z'
and m&. As an example, if m„=1.1 GeV, then
1 (A, -pw) is constrained to lie between 70 and
130 MeV (for 1.1 ~ z2~ 1.5).

ComParison with data. —We proceed as follows:
Fi~st, we compare'o the integrated branching ra-
tio with respect- to leptonic modes,

R= [f -' d~sdi'„. ,~, /As j/I~, +„

with the experimental value R =0.26+ 0.20 (M„
a 0.95 GeV) obtained from the data of Jaros et al. '
Next, for acceptable values of A, the theoretical
mass distribution with an arbitrary normalization
constant as a fitting parameter is fitted (in a g
sense) to the experimental 3v mass distribution
above pw threshold. We use the data of Jaros
et al. because it has error bars on the points,
and does not include p mass cuts on the data. The
latter aspect will be useful in our later discus-
sion of the role of background.

Figure 1, curve a, shows the best fit for I"(A,- pw) =I"„=100MeV (corresponding to z2=1.3).
The value for R in this case is 0.31, which is ac-
ceptable, but the mass distribution is obviously
much too low on the high side of resonance. Var-
ying z2 between the acceptable limits does little
to better the fit, which has X' per degree of free-
dom = 13.0/7. Thus, we conclude that although
the integrated decay rate is acceptable, the mass
distribution is not.

From a X' point of view, the situation actually
improves as m~ increases, but the mass distribu-
tion above resonance is still not acceptable. Best
fits for m& = 1.2, 1.3, and 1.4 GeV are shown in
Fig. 2." The widths forA, -p~ in these cases
are 200, 350, and 500 MeV, respectively, cor-
responding to z'= 1.3. The values of B are ac-
ceptable, ranging from 0.25 to 0.18.

Background contributions. —In spite of the
shortcomings of the fit in Fig. 1, curve a, we
do not conclude that the 1.1-6eVA, implies a
conflict between 7 decay data and HPCA. The
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FIG. 1. Curve a, best fit to 3~ mass distribution for
case mz = I.I GeV, I'~ = I'(A& pw) = 100 MeV, no back-
ground; R =0.31. Curve b, best fit for case ~„=1.1
GeV, I'~ =150 MeV, 1(A,-p7t') =100 MeV, with non-p~

background; R = 0.33.

FIG. 2. Best fits for curve~, ~„=1.2 GeV, 1'~
=I"(A, -pn'} =200 MeV, R =0.26. Curve 5, m„=1.3 GeV,
I'„=I'(A,-pw) =350 MeV, R =0.22. Curve c, m~=1.4
GeV, I'„=I'(A,-pz} =500 MeV, R =0.13.

reason is that both the Ward-identity and Lagrangian approaches require the existence in the four
yoint function"'" of a contact term

(m'(k, )w'(k, )m'(k, )g„"(0) gB„'((fa+5(s =—m„')lk, „+ c(k, k,k„+0, RP,„),)i!"'5"+ cyc11c). (9)

This leads to terms in the decay rate proportion-
al to three-particle phase space, and thus con-
tribute to the high-mass tail in Fig. 1. The co-
efficients a, b, c in (9) are unfortunately only
partly determined by HPCA, because they depend
sensitively on undetermined on- and off-shell
A pt' and em~ couplings. Thus, - we have approached
the problem in the following phenomenological
manner: (1) Set c=0. (2) Fixed a and b by re-
quiring (i) an acceptable value of ~, (ii) a rea-
sonable fit to the 3m mass distribution, and
(iii) a non-pm contribution to the A, width of, for
example, ~ 50 MeV for m„=1.1 GeV. A fit along
these lines is shown in Fig. 1, curve b. '4 The
parameters are m~=1.1 GeV, I'„=150MeV,
&(A,-p~) =100 MeV, a=168 GeV ', b =306 GeV '.
The values of a and b are in line with the scale

(~ ben „'-m„'/g„F, = 100 GeV ') which is typical
of the terms which a~e calculable from the four-
point 1PE functions in Hefs. 12 and 13. The total
value of R that we obtain is 0.33, with 0.18 com-
ing from the pm channel, and 0.15 coming from
the background.

Our conclusions are the following:
(1) Because of the small width required by

HPCA, a fit to the data is not likely if the A, has
mass 1.1 GeV, and the final state consists en-
tirely of pm with no background.

(2) However, a fit consistent with the full con-
tent of HPCA for the four-point function (3wlA'„IO)

is obtainable with a narrow A„ i.e., m„=1.1
GeV, I'„=150MeV, F(A, -pw) =100 MeV. The
background term can be thought of as simulating
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a broad e~ final state, as well as non-A, contri-
butions Lproportional to the coefficient 5 in Eq.
(9)]. Our background term is a small perturba-
tion (15%%uo) on the pm term in the region ~s& 1.15
GeV, but dominates for 4 s 2 1.25 GeV.

After, a pw cut, Alexander et al'. ' find the re-
gion 1.2 &M„/GeV& 1.5 to be populated with
v'p'v events at a density of about 1 event/0. 1
GeV. This number is claimed to be consistent
with the estimated background due to electron
misidentification. Our background term contri-
butes about 2 events/0. 1 GeV in this region (see
Fig. 1, curve b), of which, about half contain
m+m pairs which do, in fact, populate the p mass
bands. Hence we make a prediction of about 1
event/0. 1 GeV in this region which will not fall
in the p mass bands; within statistics, this is
consistent with the data.

(3) If indeed there is a narrow 1.1-GeVA» one
must reconcile this result with the absence of
such a resonance in partial-wave analyses (PWA)
of the 3m final states produced in diffractive and
charge-exchange hadronic interactions. In dif-
fractive production we can only guess that the

complicated interplay between Deck background
and resonance production prevents the extrac-
tion of the resonance parameters in a PWA (with
present statistics) ~ The absence of an A, signal
in forward charge-exchange reactions is more
mysterious because of the negligible background.
Here, it has been suggested" that the amplitude
is suppressed in the forward direction because
of a zero in the mpA, vertex function at kp 0 Fi-
nally, a narrow 1.1-GeV 3m peak is seen in back-
wardK p and v p reactions, " and it is presum-
ably the A,

(4) In a previous analysis of diffractive data"
one of us (R.A. ) obtains a wide (-500 MeV) J
= ~' resonance near 1500 MeV. The presence of
such a structure does not vitiate the present
work, because our procedure of expanding ver-
tex functions to second order in momenta includes
the effects of such gentle, high-mass singular-
ities in the first term in Eq. (6) for the amplitude
Eo (corresponding to a subtraction in a dispersive
approach), whose normalization is fixed by HPCA.
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