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We report the large-r and small-r expansions of the one-particle reduced density matrix
p(~) of a system of impenetrable bosons in one dimension at zero temperature. These
expansions were derived from an exact calculation of p(y) to be reported elsewhere. We
find that the large-z expansion of p(x) contains oscillatory terms which we. relate to the
analytic structure of the momentum density function n(k).

One of the model systems that has continued to attract interest is the nonrelativistic many-body sys-
tem of bosons in one dimension interacting through a two-body potential c5(x, -x,.). In particular,
the limit c -~ corresponds to a gas of impenetrable bosons. The exact ground-state wave function of
N impenetrable bosons on a chain of length L with periodic boundary conditions was shown by Girar-
deau to be given by

1—n&m~n
exp x„—exp x

The study of the one-particle reduced density matrix (which we henceforth ref r to simply as the den-
sity matrix), defined (for zero temperature) by

pn I ( ) 3o 1 30 n l~nyI ( 1$ ') xN 1t )~¹I (xl&' ' 't 8 1$ )P

was initiated by Schultz' and by Lenard. In this Letter we report the large-~ and small-r expansions
of p(r) obtained from an exact calculation of this density matrix for the system of impenetrable bosons
in the thermodynamic limit and at zero temperature.

The thermodynamic limit is the limit N-~, L-~, such that p=N/L is fixed. Denoting the thermo-
dynamic limit of p¹~(x—x') by p(x —x'), we know from the work of I enard» that this limit exists,
that the limiting momentum distribution function F (k) exists and is a continuous function of k, and that
these two quantities are related by

p(x) = 5 „e""dE(k).

We will write dI" (k) = n(k)dk, where n(k) is the limiting momentum density function. Both Schultz and
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Lenard proved that lim„„p(x) =0. This means that there is no off-diagonal long-range order' which
ln turn implies that there is no macroscopic occupation of the k = 0 state.

For x -~, we find' that p(x) has the following asymptotic expansion':

/~ 1 1 1 1 13 1 sin(2x)
p(x)=p ixi 'h 1+ —cos(2x) ———,+ ——+—

4 x2 8 8 w x'

(4)

with p„=~e'~'2 '~'A '=0.92418. . . and A =1.2824271. . . is Glaisher's constant. Two aspects of (4)
should be noted: (i) the algebraic decay of p(x) and (ii) the presence of oscillatory terms in the correc-
tion terms to the leading x ' ' behavior.

Lenard' has derived an expansion of p(x) for small x. We have used these results to extend the ex-
pansion to order x' [Lenard expanded p(x) to order x~] with the result'
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Using the expansions (4) and (5) (these expansions overlap to within 1/0 for x= 2.7), we plot p(x) in
Fig. 1 along with Lenard's upper bound (e/x)' '.

The expansion of p(x) for large x has the general asymptotic structure

( )
~~ 1 p c2n p cos(2m') g can.m p sin(2m@) ~ c2n I

n=1 m =1 n=O m=1 n=0

where c,„, c,„', and c,„are constants. This
expansion enables us to study the singularity
structure of the one-particle momentum density
function n(k). From (3), (6), and standard asymp-
totic methods we conclude that the

~ x~
'~' behav-

ior of p(x) at infinity!, eads to a
~ k~

'~' singularity
inn(k) at k=o. Furthermore, the terms with
cos(2mx) and sin(2mx) in (6) lead to additional
points of nonanalyticity for n(k) at k =+ 2mk F,
m=1, 2, . . . . At these points some higher deriv-
ative of n(k) diverges. For example, at k =+ 2kF,
d'n(k)/dk' is divergent. All the singularities are
square-root branch points.

We conclude with the following remarks.
(1) Note that a system of free fermions has a

sharp Fermi surface at zero temperature where-
as the system of impenetrable bosons has only
a divergence in the second derivative of n(k) at
0=+2kF and milder divergences at +2m&F, m= 2,
3 0 ~ ~ ~

(2) The model of Sutherland' is a generalization
of the impenetrable-boson system. For the Suth-
erland model the ground-state wave function is
of the form of Eq. (1) where now the absolute
value is raised to the power A. =&(g), g being a
coupling constant appearing in the Sutherland
Hamiltonian. For X=2 bosons, n(k) has, as was

shown by Sutherland, ' the simple form

(4~)-'in(2k, /j k)), k - 2k„
0, o 2&F.

(7)

Note that X = 2 bosons exhibit in n (k) a logarithmic
singula, rity at k = 0, n(k) has additional points of
nonanalyticity at k = + 2k F, and n(k) is continuous
at + 2k F. For the general-X bosons (except pos-
sibly for X=2n, n=1, 2, . . .)' we expect that the
corresponding n(k) will have singularities at
k = + 2wk &, m = 0, 1,2, . . . . We conjecture that
the nature of these singularities will be a function
of the parameter A..

(3) The reduced density matrix for nonzero
temperature has been studied by Lenard" and by
Efetov and Larkin. " Lenard has shown how to
generalize the short-distance expansion to the
case T & 0. Furthermore, Lenard showed that
the T -0 limit and the thermodynamic limit com-
mute. Lenard conjectured that for T & 0, p(x)
should decrease exponentially as r —~. Efetov
and Larkin showed that at low temperatures this
is the case with a correlation length inversely
proportional to the temperature. Thus from
these results we may conclude that for T & 0 the
k ' ' singularity at the origin in n(k) will disap-
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pear and the branch points located for zero tem-
perature at + 2mk F will move off of the real axis
for T & 0. There is an obvious scaling function
associated with these two regimes. This scaling
function deserves further study, and the A. =2
bosons of Sutherland' is no doubt a simpler case
to examine. "

(4) I.uther and PescheV' have examined the
zero-temperature correlation functions of the
one-dimensional spin-& Heisenberg-Ising model.
From their analysis they concluded that the XX
correlation function behaves as R " for large
separation, where the exponent g depends upon

the coupling J, in the Heisenberg-Ising Hamil-
tonian (see also Efetov and Larkin" ). These re-
sults together with comment (3) suggest that for
the 5-function model, ' p(r) will have a power-law
decay for 0& c & ~ (c = 0 is free bosons) with an

exponent depending upon c. Furthermore, we
expect that the branch points of n(k) will remain
at +2mkF, m=1, 2, . . ., but the nature of these
singularities will depend upon the value of c.

(5) Alternatively, one may view the 5-function
model as the one-space, one-time quantum field
theory of a complex scalar boson field 4 (x) with

Lagrangian

I I I I I I I I
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x=kFr

FIG. 1. p(x) as a function of x. The dotted line is a
plot of Lenard's upper bound.

This viewpoint has been particularly emphasized
by Thacker. ' In this language the (time-depend-
ent) density matrix p(x -x', v) is the single-par-
ticle propagator G(x -x', v.). Note that Z is U(1)
invariant. The relativistic U(l) model is obtained
by replacing the nonrelativistic kinetic energy
operator in the above by a relativistic kinetic
energy operator. The strong-coupling limit of
this relativistic U(1) model (first an analytic
continuation to Euclidean space is performed)
is the much studied" classical XY model in two
dimensions scaled to its Kosterlitz-Thouless
transition temperature T, . We do not believe
that the calculations of Ref. 13 are refined enough
to ascertain the presence or absence of oscilla-
tory terms in the correction terms to the leading
R " behavior (T & T, ). We conjecture, based
upon our above analysis, that such oscillatory
terms are present and their presence, as above,
drastically affects the analytic properties of the
Fourier transform of the spin-spin correlation
function of the classical XY model in two dimen-
sions (T &T, ).
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On the basis of a sample of 41 events of the type e+e e X~ g'&e) and no observed
photons, we have observed a clear signal of the decay ~ -~ v~. We measure the branch-
ing ratio for this decay to be b~= 0.080+0.032+0.013 and for the decay z p v& v~, b&
=0.21+0.05+0.03, where the first and second errors are, respectively, statistical and
systematic. Both measurements agree with theoretical values derived under the assump-
tion that the v. decays via the standard weak current.

I

The original conjecture of a third charged lep-
ton, proposed by Perl et al. ' after their observa-
tion of anomalous ep, events, has been reinforced
by subsequent detailed studies conducted at DORIS
and SPEAR. With one exception all the informa-
tion provided by branching-ratio measurements,
lepton spectra, and the energy dependence of the
production cross section have confirmed the hy-
pothesis that the ~ is a sequential heavy lepton
which decays via the standard weak current. '

The exception' was a measurement of the
branching ratio b, for the decay~ v' -m v, substan-
tially below the theoretical expectation. From
the relative rates for p. -e 'P, v„and m -p, P& the
standard model predicts b, /b, = 0.59 (b, = 0.094
for b, =0.16, where b, is the branching ratio for
v -e &, v, ). The experimental measurement was
reported in two forms: firstly, b, b, =0.004

+ 0.005 (b, = 0.025 + 0.031 for b, = 0.16) or, alter-
natively, an observation of two em events when
7.3 were expected, based on the detection of
twelve ep. events. (The latter form is insensitive
to an error in b,.)

Accordingly we have made a measurement of
b, ' from data obtained at SPEAR using the DELCO
detector. The data were taken with the apparatus
described previously' after the addition of two
muon walls (Fig. 1). The Pb walls, followed by
magnetostrictive wire spark chambers (WSC) and
scintillation counters, provide muon identifica-
tion over 2(Po of 4zz sr. A particle must traverse
typically 2 absorption lengths of material to be
tagged as a muon. This represents the best com-
promise between hadron discrimination and muon
range at these low energies. A track is identified
as a muon if it aims within a restricted sensitive
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