
VoLvME 42, NUMBER 5 PHYSICAL REVIEW LE'rTKRS 29 JANUARY 1979

than that perturbative QCD correctly describes
dilepton production is that qq annihilation dom-
inates. This can be tested: Gluon-quark scat-
tering increases the cross section at large q~
above that given by Eqs. (2), (4), and (5). But
note that intrinsic transverse momentum for the
partons tends to increase q~ by a few hundred
MeV.

Equation (6) implies Eq. (4.1) of Ref. 7 when
q~'«q', but is more general. No integration
over q~ is needed and a value for A, is obtained.
Unlike the result in Ref. 15 for A„no assump-
tion about the parton distributions is needed. The
present proof is on more solid ground than in
Hefs. 7 and 15. The reason that the new result
implies the old one may be that in time-ordered
perturbation theory in the center-of-mass frame
the energy denominator is of order q~ for an-
nihilation but of order q for bremsstrahlung. "

A similar remark should apply to quark-gluon
scattering, of which a calculation will be made.
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', I show that parton transverse-momentum effects can be included in factorized quantum-
chromodynamics inclusive cross sections, but that factorization is maintained only if the
transverse-momentum variable which is held fixed is independent of the scale of the parton
momentum. I also emphasized that other nonperturbative effects can be just as important as
the transverse momentum.

Despite several recent proof s" and explana-
tions, ' the factorization of inclusive cross sec-
tions in quantum chromodynamics (@CD) is still
sometimes misunderstood. A particularly sticky

point concerns the question of how to introduce a
phenomenological transverse-momentum distri-
bution of partons within hadrons. This question
is of some practical importance because fits to

294 1979 The American Physical Society



VOLUME 42, NUMBER 5 PHYSICAL REVIEW LETTERS 29 JANUARY 1979

data in hadron-hadron scattering into high-trans-
verse-momentum final states at presently ac-
cessible energies depend sensitively on the as-
sumed form of these nonperturbative effects. '

In fact, there are two distinct questions: (I) Is
it possible to include transverse-momentum dis-
tributions in a way which is consistent with the
factorization formalism and, if so, how~ (2) Is
it physically sensible to do so~ In this note, I
will answer the first question by giving a self-
consistent algorithm for calculating transverse-
momentum eff ects. But I will also emphasize
that the answer to the second question is non-
trivial and may depend on the process to be
studied.

The result of the factorization analysis for an
incoming parton can be written as follows:

(neglecting effects of the hadron mass as well as
quark-mass effects") is

«(P) =Z, fd'P«j(P) &y(P P), (2)

where F; (P,P) describes the probability of finding
a j-type parton of momentum p in the hadron. '
If the transverse momentum of the partons can
be neglected, then

&,(I,P) =fdyf~(y) 6"'(t -yP) (3)

Then the d P integration in Eq. (2) is trivial, and
I can write

«H(P) =E, fdy «;(y P)f, (y)

=Q) fd )do~()P, M)f~(),M),

where

do (p) =Q„fd ]do, ()P,M) I'» ($,M),

where «&(P) is the perturbative QCD differential
cross section for some inclusive process involv-
ing an incoming j -type parton (j is a quark, anti-
quark, or gluon) with momentum P" (for simplici-
ty, I ignore quark masses and take p =0). do'&(p)
is divergent as P' goes to zero, but the import of
Eq. (I) is that it can be factored into the convolu-
tion over a single variable, g, of a finite effective
cross-section do with a (matrix) function I' which
contains a11 the mass singularities. " Both da
and I' depend on the renormalization mass M
which is necessary not only to renormalize the
QCD coupling constant but also to implement the
factorization of the 1ogarithmic divergences.
Since M is completely arbitrary (the moments of)
do and I satisfy renormalization-group equations.

To make contact with hadron scattering, some
assumption must be made about how the partons
studied in perturbation theory are related to had-
rons. The most general assumption consistent
with the impulse approximation is that the inclu-
sive cross section for hadrons of momentum P

p" =y(P" +nm" + pr"), (6)

where p~ is a spacelike vector such that p~P
=p~ =0.

For P' =0, if we write

6' (P,P) = 2y '6(P'P' (y, p ),

then Eq. (2) becomes

f, are the ."renormalized" distribution functions
which are actually measured in deep-inelastic
scattering experiments. The moments of fj(),M)
obey the standard renormalization-group equa-
tions.

An analogous analysis is possible even if the
transverse momentum is not zero. To define a
measure of the transverse momentum, introduce
another l.ightlike vector m" (for example, in P
+P - p'+ p."+ anything, m" should be chosen to
be the momentum of the other incoming hadron;
in electroproduction, m" =q" -xP" where q" is
the virtual-photon momentum and x = —q' j2Pq).
Then define

do~(P) =Q fdy d'pr «gl y P + l+y(y pr)

=Egfd( prdird~l ((P+2 melar, M ~E, ((,ps, M),

where
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Hopefully, the role of the p~ variable is clear
to the reader. Because p~ is an "angular" meas-
ure of transverse momentum (in the sense that
it does not depend on the scale of the parton mo-
mentum P"), it can be held fixed during the re-
scaling of the parton momentum which is essen-
tial to factorization. Thus the $ moments of
E,(),pz, ,M) at fixed pr satisfy the same renormal-
ization-group equations as the moments of f, (),M).
In particular, it is consistent with the factoriza-
tion analysis (though not obviously the best thing
to do phenomenologically) to write E as a product

or as a sum of such products. This form is very
convenient for actual calculations.

On the other hand, the actual transverse mo-
mentum of the parton in Eq. (8), pr = $p» is a
very complicated variable from the point of view
of the factorization analysis. The moments of
the distribution functions E; at fixed Pr do not
factor and the moments of the renormalized dis-
tribution function E& do not satisfy simple re-
normalization-group equations, all because Pr
scales with P" and interferes with factorization.

Note that it would be wrong to make an artificial
separation of dc into a zeroth-order ("naive par-
ton") piece and higher-order contributions and
then treat the two differently in transverse mo-
mentum. The parton model only makes sense be-
cause it is possible to define the do which goes
with the finite renormalized distribution func-
tions. There is nothing special about the zeroth-
order part of da except that it is sometimes big-
ger than the higher-order contributions.

I have now answered the first question posed at
the beginning of this note. Before going on to the
second, I will review the answer once more. The
crucial formula is Eq. (8) in which transverse-
momentum dependence is introduced in the stan-
dard formalism in terms of a variable p~ which
is independent of rescalings of the parton mo-
mentum. Equation (9) shows that the transverse-
momentum-dependent distribution functions
E&(),p»M) have the standard renormalization-
group behavior at fixed pr. And Eq. (10) gives a
convenient form for actual calculations.

The answer to the second question posed above
involves not formalism but physics. The impor-
tant thing to remember is that the effect of a fi-
nite p~ distribution is not the only nonperturba-
tive effect left out in the standard factorization
analysis. Other effects which can be equally im-

portant include soft initial- or final-state interac-
tions and corrections because the bound partons
are off shell. These effects are more difficult
to model than the pr dependence of Eqs. (8)-(10).
And what is worse, the effects of initial- and
final-state interactions are obviously process
dependent. They will not be the same, for ex-
ample, in electroproduction and P+P- p'+p.
+ anyting.

In electroproduction, the relative magnitude of
the final-state-interaction and transverse-mo-
mentum effects can be inferred from an analysis
of 1/Q2 terms in scaling violation. ' This phenom-
enological analysis suggests that final- state-
interaction effects are slightly larger than trans-
verse-momentum effects and go in the opposite
direction (to increase the inclusive cross section
at large x). Clearly final-state interactions can-
not be neglected. It seems reasonable to specu-
late that one reason why nonperturbative effects
appear to be larger in processes involving had-
ron-hadron scattering into high-transverse-mo-
mentum final states than in electroproduction is
that the various nonperturbative effects do not
tend to cancel in the high-Pr processes as they
do in electr oproduction. Either the initial-state
interactions are unimportant or they reinforce
the effect of nontrivial p~ distributions.

It is clear from this discussion that to extract
the full predictive power of perturbative QCD,
one must try to model or fit a variety of nonper-
turbative effects, not just Pr W 0, or try to find
measurable quantities in which nonperturbative
effects are small. Transverse-momentum ef-
fects summarize important physics, but they do
not tell the whole story.

I mould like to thank D. Scott for reminding me
that this subject was not completely understood.
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Quantum-chromodynamic sum rules are derived which are sensitive to resonance con-
tributions and in fact allow one to compute leptonic decay widths and masses of low-lying
resonances. The crucial poiot is the inclusion of power corrections which are related to
the vacuum structure of quantum chromodynamics.

The nonperturbative effects of quantum chromo-
dynamics (QCD) seem to be crucial for under-
standing quark confinement. " Here we will
study phenomenological implications of the non-
perturbative terms in QCD for resonance phys-
ics.

We will approach resonances from short dis-
tances at which QCD becomes especially simple
because of asymptotic freedom. ' The basic idea
is that nonperturbative effects induce power cor-
rections which violate asymptotic freedom if one
tries to extend QCD to larger distances. This
breaking is correlated with the appearance of
resonances which bring structure into the other-
wise smooth quark cross sections. Phenomeno-
logically power corrections are introduced via
vacuum expectation values such as

(ol+Io&, (olG„:G„„'l0&,

where ( is the quark field and G»' is the gluon-
field-strength tensor.

Following this line of reasoning, we obtain con-

straints on the resonance properties which in fact
amount to computing the p-meson electronic width
and mass, the m- pv decay constant, and so on.
We will concentrate here on the 7t-p-A, system
just because there are classical papers on the
subject' and it is instructive to compare new re-
sults with the well-known ones. Extensions to
other resonances and other details will be pub-
lished elsewhere (some aspects of the QCD ap-
proach to mesons based on power terms have
been discussed previously' by us).

We start with the T product of two hI = 1 vector
currents:

11&„=i fe""dx(ol T (I', (x)I', (o) jl o&,

gp
=

z(coypu -cfyptf),

where u and d are quark fields, and q is the pho-
ton momentum which is taken to be spacelike and
large, q'= —Q', Q'» p,

'
(p, is some typical hadron-

ic mass). The Wilson operator expansion allows
one to represent II„„asa series in Q ':

Il„„=(q„q, -q'g„, )II(Q'), ll =(ol[C, I+Q C G„„'G„„'+Q C (pl'()(P'q)ll 0&,

where I is the unit operator and 1 are matrices
acting in the color, flavor, and spinor spaces.
Higher powers in Q

' are neglected as well as
terms proportional to m„„', m„uu, etc. , which
are suppressed by the smallness of the quark
masses. ' The expansion coefficients C, ~ & can
be found perturbatively since the effective coup-
ling constant o.,(Q) is small.

The Wilson operator expansion can be proved
within standard perturbation theory. Then taking
the vacuum-to-vacuum matrix element singles
out the unit operator which absorbs all of per-
turbation theory. Now, we want to include non-
perturbative terms and the question arises as to
the validity of Eq. (3).
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