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The energy of a linearly perturbed system is shown to verify a nonlinear first-order
differential equation in the semiclassical limit. Solutions of this equation are compared
to the exact energies, for a quartic oscillator.

I'et us consider a perturbed Hamiltonian

H(z) = p'+v(x)+zw(x),

where p'= —d'/dx', and the perturbation depends
linearly on a parameter z.

There has been considerable interest in deter-
mining the dependence of the energy of such a sys-
system as a function of z.' In particular, analyti-
city and crossing' problems are very important.

Let us denote by Z(z) an eigenvalue of the Ham-
iltonian

If( ) I 0( )&=Z( )I 0( )&,

where E(z) is the envelope of a one-parameter
family of straight hnes, namely the tangents to
E(z), which satisfy the equation

&((.)I p'+ is(z. )&

&((z.)I 4(z.)&

&4 (z.)lwl @(z.)&
&((z.)lk(z. )&

'

where ((z,) is the eigenstate of H(z, ), correspond-
ing to the energy Z(z, ).

Therefore, an elementary theorem of geome-
try' states that Z(z) verifies a first-order differ-
ential equation. It seems then of crucial impor-
tance to determine this differential equation. I
show, in the next paragraph, how such an equa-

tion can be obtained in the classical limit.
We know that

Z(z)=(p'&+(v&+ (w&, (4)

2(p'& = (x av/ax& +z(x aw/ax&. (6)

In general, it is possible to express any func-
tion in terms of a given function. Hence I shall
make the assumption that it is possible to write

x av/ax =G(w(x)),

x aw/ax =E(w (x)),

v(x) =R(w(x)).

In the semiclassical limit, we know that

&~"( )& =&~( )&".

(7a)

(7b)

(7c)

Therefore, in this approximation, Eq. (4) takes

where the brackets denote mean values in some
eigenstate of the Hamiltonian. From the Hell-
mann-Feynman theorem, we know that

(w& =dE(z)/dz.

In order to obtain a closed differential equation
for E(z), one needs to express the quantity (p'&

+(v& as a function of dE(z)/dz, E(z), and z. This
can be done, in some approximation, by the use
of the virial theorem, which states that
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FIG. 2. Same as Fig. 1. Full line, results of Fig. 4;
dashed line, our calculations.
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FIG. 1. The energy, as a function of z for the ground
state, and the two first excited states: Full line, re-
sults of Ref. 4; crosses, our calculations.

the closed form

E(z) =z —+Z—dE dE
dz dz

+-,'G —+ —I' —.
(9)

v(x) =x',

~(x) =x'.

The solution of (9) can be parametrized as

z =Ap'-0. 5p, E(z) = 3Ap+0. 5/p,

p )0.

(10a)

(10b)

Figure 1 shows a plot of (11), for the first three
levels of the quartic oscillator, compared with
the exact numerical results of Biswas et a/. The
constant A has been fitted, for all levels, to the
energy at z =100 given in Ref. 4. For the three

This equation defines the trajectories of E(z) as
a function of z.

I shall make three comments about Eq. (9):
(i) It is exact for scale-invariant potentials' name-
ly, for e and se which are homogeneous functions
of x, of the same degree. (ii) It becomes exact
for large z, and provides the exact behavior of
the energy at large z. (iii) The solutions of (9)
depend on one constant of integration. From re-
mark (ii), one sees that this constant should be
fitted at large z with the exact energies.

I now show an application of this method to the
quartic oscillator, with 8

&= gp, '+
2 Q v(r, ,), (12)

where the two-body potential v(r) depends only on
the modulus of r, it is easy to see that Eqs. (4),
(5), (8), and (9) become

E(z) =N(p, ')+-,'zN(N —1) (v(r»)),

dZ/dz = .' N(N —1)(v (r„)), —

(4')

(5')

2N(p, ) =
2 Q (r, ; V,. v(r, ;))

1—i &2(N

N(N- 1)= z
2

(r»' Viv(1»)).

first levels, one finds, respectively, A, = 0.207 206,
A, =1.419631, A =3.905864.

The agreement is strikingly good, for all lev-
els, for values of z larger than 4. For z smaller
than 4 (Fig. 2), the agreement is still rather good
for the excited states. I note that for z negative,
the energy Z(z) becomes multivalued, and shows
a singularity at z = 0. This is in accord with the
WEB analysis of Bender and Wu' and the rigorous
results of Simon' and confirms the invalidity of
application of the perturbation theory around z = 0.

The method presented here should be valid in a
semiclassical limit, namely for large z. Despite
the good agreement in the quartic-oscillator ex-
ample, it would be very interesting to find a sys-
tematic way of improving Eq. (8), in order to in-
clude higher-order terms in 1/z.

This whole formalism can easily be extended to
the many-body problem, and would be of consid-
erable interest, since it would transform it to a
one-variable differential equation. For example,
if we take the Hamiltonian

286



VOLUME 42, NUMBER 5 PHYSICAL REVIEW LETTERS 29 JANUARY 1979

By making similar assumptions as in Eqs. (7}
and (8), i.e. ,

r Vv(r) =F(v(r)),

one obtains

Z(e)= 4'(N-l)E(
& d )+z . (9')

This very simple equation should be of great use
in studying the properties of many-body systems,
such as extensivity or saturation.

The author wishes to thank B. Buck and B. G.
Giraud for useful discussions. Special thanks

are due M. Barnsley for illuminating remarks
and helpful encouragements.
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We report a theroetical prediction of a new feature in the spectrum of light scattered from
a Quid in a nonequilibrium stationary state with a temperature gradient. The spectrum is not
symmetric in the frequency shift and the Brillouin components have different intensities. The
phenomenon is linked to the breaking of time-reversal symmetry and to the appearance of a
static correlation function between momentum and number densities which is zero in equilib-
rium, but has a 1/h' dependence in the stationary state. We suggest a light scattering experi-
ment by means of which these predictions can be verified.

We report here some results of a theoretical investigation of nonequilibrium stationary states (NESS)
in simple fluids. The theory predicts some new effects and one of the purposes of this communication
is to suggest an interesting experiment which can probe the new phenomena.

Our analysis is based on nonlinear response theory. In the context of this theory, we have assumed
the existence of a set of "slow" variables, which spans the slow, macroscopic evolution in an N-body
system. " For a simple fluid it is customary to take the densities of the conserved variables (i.e.,
energy, number, and momentum) to compose this set. In the following we denote such a set by
A(X"(t), r), where X"is the phase point and r is the position in space; we use a shorthand notation and
write A(r, t). The set of conjugate variables is denoted by C(r). An inner product in the space of such
sets involves integration over the spatial variables as well as summation on the indices (including
Cartesian component indices where appropriate), and will be denoted by *, as A(r„ t)*B(r,).

With this in mind, we have derived the NESS average of an arbitrary dynamical variable, say B(r, t).
Since an isolated system has no NESS we solved the Liouville equation for a system composed of three
subsystems, two of which are large and act as reservoirs. The third subsystem is smaller and in it a
quasistationary state is established. The result for the NESS average (denoted by ()NE) is

(B(r))NE—- (B(r))q-.f dT(B(r)I(r„-r))L * VP4(r, ) .
In this equation and the following, the caret denotes the deviation of a quantity from its equilibrium av-
erage. The notation ()z stands for an average on a "local" distribution function

fG. c.(X")elf&%'(r, ) *A(r,)]
P»JdX+f G c (X")exp[PC (r,) *A(r,) ]

' (2)
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