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The vibrational frequency-dsitribution spectra of the random one-dimensional ternary
alloy A+~,C are accurately predicted for the first time by a statistical theory of small
clusters embedded in a coherent-potential-approximation effective medium. The theory
can be applied practically to real three-dimensional alloys.

By treating small clusters embedded in an ef-
fective medium (described here by the coherent-
potential approximation), we are able to repro
duce the "exact" numerical frequency-distribu-
tion spectra of the vibrating, mass-disordered,
random, one-dimensional (1D) alloy 4+, ,C.
The atoms of this linear ternary alloy are coupled
by nearest-neighbor harmonic forces with force
constants y, and execute only longitudinal vibra-
tions. The present theory is valid for all concen-
trations and is especially applicable to concentra-
tions 0.05 ~ c ~ 0.95 throughout the alloy regime.
We believe it to be the first statistical theory to
reproduce the exact numerical vibrational state
densities for the 1D ternary alloy. The theory
can be applied to alloys of arbitrary mass ratios
mA/ms and ms/mc; it satisfies the oscillator
strength sum rule; and it correctly reproduces
the exact spectra in the limits c-0 and c-1. By
far the greatest virtue of this theoretical method
is that is is computationally efficient, and, unlike
direct numerical calculations" and cluster gen-

eralizations of the coherent-potential approxima-
tion, ' ' can be practically applied to real 3D al-
loys.

The basis of the computations is the coherent-
potential approximation (CPA) originally invented

by Taylor, ' Soven, ' and Velicky, Kirkpatrick, and
Ehrenreich, "and subsequently adapted for ter-
nary alloys by Tayloraa and by Hen and Hartmann a2

By itself, the CPA does not give a successful
quantitative description of the alloy vibrational
spectra; but when a relatively small random
cluster is embedded in the CPA effective medium,
the resulting cluster density of states accurately
mimics the density of states of the random alloy.

To our knowledge, the first authors to publish
the suggestion that effective-medium and cluster
methods be merged were Gonis and Garland, "
whose suggestion dealt only with binary alloys;
however, the general idea of treating a cluster em-
bedded in a medium has been advanced indepen-
dently by numerous authors"" and we were led
to the CPA as an optimal medium by our syste-
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matic studies' of various approximations for ef-
fective hosts for clusters.

The equations of motion of the infinite vibrating
alloy are

(M~'-@) )u& =0,

where {n,e)u&e ' ' is the displacement of the c.th
atom in the nth unit cell, and n=1 (+=2) refers

to the sublattice with the A or B (C) atoms. The
mass matrix is

(n, alMln~P& =&n,ni&n, s(mn&n, i+me&~p)~ (2)

where m„ is a random variable which assumes the
values m& and m& with probability c and 1-c.
The notation throughout the rest of the paper will
thus be that the sublattice with index 1 is disor-
dered. The force-constant matrix is expressible
in terms of the Kronecker &:

&n, nl ~
I ~, P& = q L5„,„,(35. s-1) -5„,„,5„,,5, „-5„,„,P.,,5, ,,].

In the present theory, for a fixed composition c, one selects from the disordered infinite chain a
segment of N, unit cells with a specific configuration of A. and B atoms and with the ratio of the number
of A atoms to the number B atoms in segment equal to c. This cluster is then embedded in an effective
medium described by the Sen and Hartman" ternary CPA Green's function, which is defined as

g=(M, (u'-4, —Z+i0) ', {4)

where g is the self-consistently determined CPA self-energy matrix, and~a and 4, are the mass and
force-constant matrices of any reference lattice. (Here we take the reference lattice to be BC, and
recognize that the spectra are independent of this choise. ") For the 1D ternary, Sen and Hartmann"
have shown that

&(~) =&.I~, 1&m ~+(~)(,1I,

where o satisfies the CPA self-consistency equation

ms''+ (mz ms)-c+m&u 0 (ms8 -ms+ mz)(n, 1)g~n, 1& =0.

Equation (6), when combined with the. explicit ex-
pression for (n, 1 lgln, 1&obtained by Sen and
Hartmann, "forms an easily solvable cubic equa-
tion for 0'o

The Green's function for the cluster in the ef-
fective medium is

G =[Mrs' -@+i0] '

and satisfies Dyson's equation

where

V-=(V, -M)~'- (e~-+) -&.
In what follows, we take 4 = 40.

The primary virtue of this formalism is that,
in one dimension, the resulting matrix equations
are N, &N„ the size of the cluster, and not the
size of the infinite chain. These equations are
solved numerically and the density of states of
squared frequencies is approximated by

D(~') = —(wN, )
' Zm Tr.(MG), (10)

where Tr, means a trace over all sites of the
cluster. This is then averaged over the ensemble
of all possible configurations of atoms in a cluster

of N, cells. The resulting alloy densities of
states for small clusters of N, = 8 unit cells are
plotted in Figs. 1 and 2, where they are compared
with exact numerical calculations for 20 000-atom
chains by Painter. "

Figure 1 gives the frequency distribution spec-
trum for the case m~/m „=2, m ~/m ~ = 0.5, c = 0.5.
This corresponds to the case of an alloy in the
"persistence"" regime; that is, the nearest-
neighbor coupling is too weak ( Im~-m ~ I cu'» rp)
to cause the AC and BC spectra to fully hybridize,
and the alloy spectrum displays features clearly
identifiable with individual AC and 8 C lattices

'.he middle band is the BC optical phonon and
the high-frequency band is assignable to A.C.

Figure 2 shows the spectrum in the case ms/
m„=2, m~/m~= ~» c=0.5. In this case, the al-
loy is in the "amalgamation"" regime, where the
A-B mass difference is so small (Im„-ms I uP

&(y) that the spectra of the alloy subcomponents
are lost and a hybridization spectrum appears.

Both of these spectra are for c=0.5, a concen-
tration previously inaccessible to any statistical
alloy theory. As may be seen from the figures,
the agreement with the exact numerical calcula-
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FIG. 1. Frequency-distribution spectrum for the alloy
A+& in the "persistence" regime, ms/mA ——2, ms/mc
= 0.5, c = 0.5. Histogram is the exact numerical calcu-
lation of Painter for a chain of 20000 atoms and the
smooth curve is the result of the present calculation
for a cluster with Nc =8 unit cells and a CPA effective
medium. u = 2y(1/mA+ 1/mc) . The dotted line is
the CPA result of Ref. 8.

FIG. 2. Frequency-distribution spectrum for the al-
loy A+& C in the "amalgamation" regime, ms/mA ——2,
ms/mc =y, c = 0.5. Histogram is the exact numerical
calculation of Painter for a chain of 20000 atoms and
the smooth curve is the result of the present calcula-
tion for a cluster with N, =8 unit cells and a CPA effec-
tive medium. &u~» =2y(1/mA+1/mc). The dotted line
is the CPA results of Bef. 8.

tion is excellent in both the persistence and amal-
gamation limits, with the detailed features of the
spectrum being reproduced for all frequencies.
The CPA breaks dove at very low minority-atom
concentrations [order c' or (1-c)'] and efforts to
improve it by executing multisite CPA' ' would

be, especially in higher dimensions, computa-
tionally orders of magnitude more tedious than
the present method even for binary alloys, since
they involve integrations over the Brillouin zone
and iterations of the cluster to self-consistency
which are not required here.

This embedded-cluster theory can also success-
fully reproduce all the exact numerical spectra
for the binary 1D alloy AQ, , computed by Dean'
and by Payton and Visscher, ' and can be applied
to 2D and SD binary and ternary alloys as well.
A detailed discussion of the method and its appli. -
cation to the 1D binary alloy A, B,„,and compari-
sons with the exact calculations of Dean' and Pay-
ton and Visscher' mill be discussed in a later pa-
per. '4 We know of no case for which the embed-
ded-cluster method yields spectra in poor agree-
ment with exact numerical calculations; any such
case would doubtless have to involve long-ranged
resonant interactions between atoms. Moreover,
the theory can be applied to electronic and mag-
netic excitations as well as to vibrational excita-
tions. Therefore, we believe that the embedded-
cluster theory offers a practical general solution
to the alloy problem which will not only yield

spectra of random alloys but will also identify
and correlate characteristic structures in those
spectra with specific alloy configurations~here-
by facilitating studies of nonrandom alloys.
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dering. In this Letter we wish to report a suc-
cessful application of this idea to a simple anti-
ferromagnet.

The principle of the method is as follows. ' Con-
sider a coil assembly with a small sample on its
axis a distance 8 away. The flux from the sam-
ple which threads the coil may be shown from
reciprocity' to be

C(R)= f „m(r) ~ h(r+R)d'r, (I)
C

where m(r) is the magnetization density at the
point r from the center of the sample and h(R+ r)
is the field which would be produced at r if unit
current flowed in the coil. Equation (I) may be
simplified without significant loss of generality
by assuming the coil to have axial symmetry and
m to have only an axial (z) component. If h var-
ies only slowly over the sample, then Eq. (I)
may be expanded in a Taylor series about the
sample center (now at z,) to become

Using superconducting-quantum-interference device magnetometry, rve have made the
first direct measurement of the macroscopic quadrupole field which arises from antifer-
romagnetic order.

Magnetization measurements are a powerful
tool for investigating magnetic systems, especial-
ly ferromagnets where the sudden appearance of
a large macroscopic dipole moment may be tak-
en as direct evidence for ordering. Antiferro-
magnetic order on the other hand is character-
ized by higher-order magnetic multipoles, a
quadrupole in the simplest case. Such multipoles
do not give rise to strong magnetic fields in their
vicinity, nor do they couple strongly to applied
fields. For this reason traditional bulk magnetic
measurements yield relatively little information
about the antiferromagnetic state. However, the
field from an antiferromagnet, though small, is
not zero and one of us' has recently suggested
that it could be measured using superconducting-
quantum-interference device (SQUID) magnetom-
etry and moreover that its spatial characteristics

!
could be used to determine the nature of the or-

@z,) = [f m, (r) d'r]h, (z,) + [f zm, (r) d'r Q, ' (z,) +

Equation (2) has a simple physical interpretation.
The first term is the contribution of the uniform
part of ~„ i.e. , of the sample's net dipole mo-
ment. The higher terms reflect the nonuniform
part of ~,. Specifically the second term is given
by the sample's net quadrupole moment, the
third by its octupole, and so on. Furthermore,
the contributions from the various multipoles
may be distinguished from each other by their
differing dependences on z„which reflect suc-

(2)

cessively higher derivatives of h, . These deriv-
atives can be easily calculated from the known
coil dimensions.

It is instructive to estimate some experimental
magnitudes. A simple antif erromagnet (AFM)
consisting of ferromagnetic planes antiferromag-
netically stacked ha.s only a quadrupole moment
and yields a flux 4 „»which may be compared to
the flux 4 FM of the equivalent ferromagnet by the
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