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Excitation energies, spins, and parities have been determined for '°2Dy in (HI, x%) re-
actions up to 1™=27*. Three isomers with T1/,=49.5ns (B, =5035keV, I"=16"), 9.9 ns
(£,=6076 keV, I"=207), and 1.6 ns (£ ,=7828 keV, I"™=26") have been found., The g
factor of the second isomeric state was measured to be £=0,65+0,06. The present ex-
perimental data compares well with microscopic calculations which imply an oblate shape
for *’Dy at high angular momenta (I"= 16%).

Recently, a great deal of theoretical work has ties, lifetimes, and decay properties have been

been devoted to the study of yrast traps occuring
at high and very high spins. Systematic experi-
mental search for delayed y-ray cascades has
shown the existence of high-spin isomers® belong-
ing to nuclei situated around the neutron number
N =82, Theoretical calculations®™* have pointed
to this region of isotopes as being especially
favorable for the occurrence of yrast traps based
on the oblate-coupling scheme. However, some
isomers can be explained as shell-model isomer-
ic states.®”® Detailed spectroscopic work on the
high-spin isomers is therefore essential for a
better comparison with the calculations. In this
Letter we report on the existence of three high-
spin isomeric states in '%2Dy. Their spins, pari-

established by y-ray spectroscopic methods. The
g factor of the second isomeric state (£, =6076
keV) has also been determined. The investigation
of the nucleus 32Dy, by Jansen ef al.” has al-
ready shown the existence of an isomer of T/,
=60 ns at E,=5 MeV with 15 <7 <18, Theoretical
calculatlons of Cerkaski et al.® predict at least
three yrast traps in this nucleus.

The nuclide 2Dy has been produced at high
angular momenta by means of the heavy-ion reac-
tions *°Ce(*®0, 4n)'*?Dy (E1s0 =88 MeV) and *'Pr-
(*°N, 4n)'*2Dy (E 15y= 80 MeV) at the Strasbourg
MP accelerator, In-beam y-spectroscopic ex-
periments were performed using a variety of
Ge(intrinsic), Ge(Li), and Si(Li) spectrometers,
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to measure y-ray excitation function and y-y and
n-y coincidences (prompt and delayed). y-ray
angular distributions concurrent to y-ray linear
polarizations were measured using a three-Ge(Li)
Compton polarimeter described elsewhere.® A
simultaneous fit of the A, and A, angular distribu-
tion coefficients and of the linear polarization p
uniquely determined the angular momentum
change A, the multipolarity A, and the electric
or magnetic character for most of the transitions.
In order to reduce hyperfine-interaction effects
on the angular-distribution and linear-polariza-
tion data due to the existence of long-lived states
in 2Dy, the targets were evaporated on thick
lead backings and heated to 260°C. The observed
level scheme is shown in Fig, 1. Up to the level
at E,=5035 keV the present measurements con-
firm essentially the level sequence reported
previously” with the (q, 6n) reaction. With the
assumption of stretched cascades, spin and par-
ity assignments given in Fig. 1 were obtained

(or confirmed) from our data. For the 5035-keV
state the /" =16" value is based on our present
results combined with the electron-conversion
measurements from Ref. 7. No evidence was
found in y-y coincidences done with Ge(intrinsic)
and Si(Li) detectors for the presence of a low-en-
ergy transition feeding the 5053-keV level as
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FIG. 1. Experimental level spectrum,
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proposed in Ref. 7. Furthermore, the n-(?)
spectrum for the 605-keV transition did not show
any prompt component (Fig. 2), Above the 5035-
keV level a new cascade of eight transitions was
identified. The experimental y-ray angular dis-
tribution coefficients and y-ray linear polariza-
tions as well as the deduced multipolarities are
reported for these transitions in Table I, To
overcome the difficulties met in preliminary re-
sults® of extracting yields of the 254- and 255-keV
lines in the presence of a strong 257-keV radio-
activity y-ray line, the angular distributions and
linear polarizations of the former lines were re-
measured with a prompt window (~ 15 ns) set on
the pulsed-beam-y-ray time spectrum.,

The search for lifetimes in the nanosecond
range was undertaken using the delayed-coinci-
dence method as well as the recoil-distance Dopp-
ler-shift method. Neutron-y and y-y time-de-
layed coincidence spectra were recorded using a
12x5-cm NE 213 scintillation counter, allowing
n-y discrimination, and a Ge(Li) spectrometer,
The half-life of the 5035-keV level, determined
from a least-squares fit to the shape of the de-
layed curve, is 7,/,=49.5+1.4 ns (Fig. 2, upper
part). From the time distributions for the 262-
keV y-ray transition (Fig, 2, lower part) and for
the 525-keV transition, a value 7,/,=9.9+0.6 ns
was obtained for the half-life of the 6076-keV
level. No differences, as compared to the resolu-
tion curves of the system, were observed in the
time spectra of the transitions lying above this
state. The recoil-distance Doppler-shift tech-
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FIG. 2. Time spectra obtained in »—y coincidences.
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TABLE I, Experimental results for the transitions decaying from the high-spin levels.

E~Fy E, Multi-

keV) (keV) 1z A, Ay pb polarity
5289-5035  253.6(2)  47(1)  —0.270(15) ¢ 0.010(17) ¢ —0,18(7) ¢ M1+E 2
5814—5289  525.2(2)  40(1)  —0.078(14) —0.009(20) 0.10(4) El
6076-5814  262.3(2)  29(1) 0.142(17) —0.005(20) 0.24(7) E2
7067—6076  990.7(2)  27(1) 0.281(38) 0.016(37) 0.31(9) E2
7608—7067  541.2(2)  23(1) 0.295(17) —0.049(27) 0.51(11) E2
7828-7608  220.6(2)  18(1) 0.358(22) -0,093(23) 0.88(19) E2
87957828  967.0(2)  13(1)  —0.224(44) 0.024(47) 0.32(14) El
9197-8795  402.3(3) 6(2)

aNormalized to the 613.8-keV transition.

bThe polarization factor p is defined as (N,—Ny) /(N ,+N)Q. See Ref, 8.
cMeasurement done with a prompt window (~ 15 ns) set on the pulsed—y-ray time spec-

trum,

nique was then used to investigate the lifetimes
of the higher-lying levels. The nuclei recoiling
from a self-supporting 1.2 mg/cm? Pr target and
the beam itself were stopped in a thick Pb stop-
per. y rays were detected in Ge(Li) counters
placed at 30° and 150° with respect to the beam
direction. The intensities of the Doppler-shifted
(I,) and unshifted (1,) y-ray peaks were analyzed
as a function of plunger-target distance. The
ratios I,/(I,+I,) for the 221-, 541-, and 991-keV
y rays show quantitatively the same variation. A
mean value of 1,6 + 0.4 ns was obtained for the
half-life of the 7828-keV level. The half-life of
the 8795-keV level is much shorter (7T,/,<0.2 ns)
since the 967-keV y ray showed no unshifted peak
in the shortest-distance spectrum. The g factors
of the two isomeric levels at 5035 and 6076 keV
have been studied with the time-differential per-
turbed angular correlation technique using an
oxygen pulsed beam (pulse width 5 ns, burst in-
tervals 200 ns). Enriched targets of °Ce oxide
of 1 mg/cm? were evaporated onto 0.1-mm lead
foils. Lead was chosen as an appropriate cubic
stopping material. The external magnetic field
(H =9 kOe) was applied perpendicularly to the de-
tection plane and reversed every minute. Beam-
bending effects were minimized by means of a
magnetic shielding tube set along the beam axis.
The y radiations were detected in a 10-cm? planar
Ge(intrinsic) counter fixed at 6=-45° with re-
spect to the beam direction. For the isomeric
level E =6076 keV (T,/,=9.9 ns), gating transi-
tions of 262 and 525 keV have been used. Time
spectra for the two transitions were combined
taking into account the fact that their A, coeffi-
cients have opposite signs. A least-squares fit

of the resultant curve (Fig. 3) gives the Larmor
frequency w=(8.88+0.53) x10"" rad s™'. Assum-
ing that the implanted dysprosium atoms are
most likely in a 3" charge state, the paramag-
netic factor has been evaluated' to be B8=3.75
for a 260°C target temperature. Crystal-field
effects on 3 were not taken into account. The
final value deduced for the g factor is g=+0.55
+0.06. Because of loss of alignment it was not
possible to determine the value of the g factor of
the T,/,=49.6 ns isomeric level at 5035 keV.

The states below I"=16" in 2Dy could be ex-
plained by rotational-vibrational coupling'*?
and by two- or more-quasiparticle excitation
modes assuming a small prolate shape’® (3=0,05).
In particular, the sequence of negative-parity
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FIG,. 3. Experimental time-differential perturbed
angular distribution spectrum and least-squares—fitted
curve,
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states established in the present work can be de-
coupled into two bands as in *°Gd: one of vibra-
tional character ranging up to the I "=9" state
and the other built on a two-quasiparticle 7 "=11"
state. The behavior of 2Dy at large angular mo-
menta /=16, i.e., the presence of the yrast iso-
mers and irregularities in the yrast line, shows
that high-spin states are built in a noncollective
way. It can be interpreted as a consequence of

a change in the nuclear coupling scheme from
one typical of collective nature to one character-
istic of the single-particle type of motion. The
observed 2Dy level structure is expected in
either a spherical or a deformed nucleus (prolate
or oblate) spinning around its symmetry axis.
The Hartree-Fock-Bogoljubov (HFB) calculation
performed by Ploszajczak and Faessler'® leads
to good agreement with the experimental data
with the deformation 8=-0,06 to —0.10 for the
states I=(16-30)%. The Strutinsky-type calcula-
tions with either the Woods-Saxon or Nilsson po-
tential® * suggest f=-0.16 for these states. The
isomerism of the 16* state can be understood
from the shape change of the nucleus and also by
the fact that this state has the lowest spin and
excitation of the two-quasiproton, two-quasineu-
tron states considered at the yrast line. Since
the calculations lead to definite predictions for
the configurations of the yrast isomers, the mag-
netic moments may provide a check of these con-
figurations. It seems that the 20~ state observed
experimentally may correspond to one of the fol-
lowing configurations (Ref. 13):

(”hu/z)z@("im/zs l2;i+) ®(Vf7/2, %_), g=0.41;
(Wh11/2)2®(1/i13/2, %+)®(Vh9/2v %_)s 8= 0.68.

If a pure HFB configuration is assumed for this
state the g-factor value g=0.41 will differ from
the experimental one (g=0.55+0,06), buta 30%
admixture of the configuration with g=0.68 is
sufficient to bring the calculated value within the
experimental error bars. The 26~ state may be
identified with the calculated one which contains
more complicated 6- and 8-quasiparticle com-

26

ponents. In conclusion it should be pointed out
that all calculations now available® *:!* explain
high-spin isomers in !*2Dy on the basis of an ob-
late deformation at large angular momenta,

The authors are greatly indebted to Dr. Plo-
szajczak for stimulating discussions and com-
munication of theoretical calculations prior to
publication,
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FIG, 2, Time spectra obtained in n—y coincidences.



