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tribution shown here although the situation pre-
viously could be described as murky.

%e conclude that there is a variation of the
parameter 8 with Q' and any reformulation of
the theory should take this into account.
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It is shown that the total reaction cross section. appropriate to the optical potential for
scattering of a projectile by a target of uncorrelated particles (nucleons) can be written
to a good approximation as a sum of exclusive cross sections for pg-nucleon knockout.
The association made by some authors of the reactive content of this optical potential
with single-nucleon knockout is shown to apply to the inclusive-reaction cross section
only.

The subject of this Letter is the connection be-
tween the optical potential for elastic scattering
of a particle from a complex target, such as a
nucleus, and the cross sections for inelastic re-
actions induced by the incident particle. In gen-
eral, one may relate the total reactive cross
section o„, defined as the difference between the
total and elastic cross sections o„=0~—o„, to
the optical potential 'I, by'

o„=C(y,t'~ et-e[ y, t'&)

(p (+)(rg) p (+))

where t. = i(2m)'u '-, with u the projectile veloci-
ty, and y, " is the elastic wave which satisfies
the optical scattering equation with the potential
%I,

'. Equation (1) is an expression of the unitary
relation between the flux lost from the elastic
channel and the imaginary part of .

The question of the reactive content may be
posed: Assuming that some approximate theory

is given for%I, what is implied about the nonelas-
tic reactions; for example, which reaction chan-
nels are included in the theory and how are the
partial cross sections to these channels to be cal-
culated? This question has been discussed re-
cently by a number of authors' ' in the context of
multiple-scattering theory, mostly concerning
the first-order approximation

(2)

in terms of the scattering of the projectile from
individual nucleons, where the expectation value
is over the target ground state. The first correc-
tion to (2) is due to correlations among the nucle-
ons. The form (2) defines a class of theories (ap-
propriate to uncorrelated targets) which differ in
what is used for t, It is generally agreed that in-
elastic scattering in which one target nucleon is
certainly implied by (2). This has been studied
in detail in a three-body model, by Tandy, Red-
ish, and Bolle. ' Application of their results to

1979 The American Physical Society 211



VOLUME 42, +UMBER 4 PHYSICAL REVIEW LETTERS 22 JANUARY 1979

pion-nucleus scattering has been made by Thomas
and Landau'; further discussion has been given
by Eisenberg, ' and by Ernst and Thaler, ' who

give unitary relations for higher-order approxi-
mations to %,.

In this paper we address two related questions
which are raised by the published discussion,
and on which we have obtained new results. The
questions are whether the inelastic excitation of
single nucleons exhausts the reactive content of
first-order optical potentials of the form (2), and
what is the relation of the unitary equation (1) in
such theories to the distorted-wave (DW) theory
of inelastic scattering. Our answers to these
questions take the form of sum rules for inelas-
tic cross sections, in which the inclusive reac-
tive cross section (1) is expressed as a sum of .

exclusive cross sections for each of which a
given number (n) of nucleons is excited (e.g. ,
knocked out). These exclusive cross sections
are to be calculated in a form of DW approxima-
tion.

We consider a model nuclear target with A nu-
cleons bound in a single-particle potential and

no mutual interaction, therefore uncorrelated.
We shall take the nucleons to be distinguishable
(as in Watson's multiple-scattering theory) and

for simplicity assume that there is only one
bound orbital for each nucleon, so that any ex-
citation is into the continuum. The projectile is
an elementary particle distinguished from the
nucleons, e.g., a meson. The system obeys a
Schrodinger equation with Hamiltonian H =H'+ V,
where

A

H'=Sr, + g H"(i),

with K~ the kinetic energy of the projectile and

H~(i) the single-particle nucleon Hamiltonian,
where

A

V= gv,
j= 1

is the interaction of the projectile with the indi-
vidual nucleons. The optical potential%, for elas-
tic scattering of the projectile may be expressed
in the form given by Feshbach, '

%, =POU+o,

with

UO=V+VQ[Q(E+ -H —V)Q] 'V,

where P, is the projection operator on the vector
space of the entire system onto the elastic-chan-
nel (ground-state target) space, and Q that onto

the inelastic space: P, +Q=1. We use E+ to de-
note the usual limit E +ig, g-0', with E the to-
tal energy. We further decompose the Q space
by

Uo =V +VP,G,P,V (4)

where G, couples P, to P„and so on, as we
shall see. But first we approximate (4) by insert-
ing V =Q,.v, , and dropping i c i' terms in (4), so
that Uo takes the form

A

Uo=—Q [v,. +v ) P,G~(i)P,v, ], (5a)

G, (i) =[P,(E'-H -v,. —U, (i)jP,] (5b)

U, (i)-=g,. [v,. +v, P,G, (i, j)Pg,.], (5c)

where the sum in (5c) excludes j =i To o.btain
(5c) we have dropped jej' terms, as in (5a). The
form of Eqs. (5) follows from the fact that v,. only
excites the ith nucleon; to reach P„a second nu-
cleon (kwi) must be struck This .expansion can
be continued to all channels n, but first we write
(5a) in t-matrix form, as in (2):

A

Uo—=Pt, , t, =v;+v, G, (i)t, , .

G, (i) =P,[P,(E+ —H —U~(i)] P, ] 'P, .
Note that the t matrix defined in (6) is not the
free-projectile-nucleon t matrix, since H' in-
cludes the nucleon binding potential, and U, (i) is
an average interaction of the projectile with the
A-1 bound nucleons (jti) (local-field correc-
tion). Since there are no pair correlations in our
model, U, has no terms of second order (in t,.),
so that the approximation leading to (5a) and (5c)
involves neglecting "reflection" terms, which
are multiple-scattering effects of fourth order
(and higher).

We may complete the expression of (5) and (6)

Q= QP,
n=&

where P„projects onto th6 subspace with n excit-
ed nucleons; this defines the inelastic channel
with n nucleons in the continuum. These sub-
spaces are connected by V, with the selection
rule P„VP =0 unless m=n, n+1, because V is a
one-nucleon operator. This can be used to de-
compose (3) into a continued-fraction form,
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by a set of recursive relations:

~ ~' ) =Zy' gK~

t,(i„.. . , i„)=v, +v, G„„(i„.. . , i„,j)t,.(i„.. . , i„),

G+i(|," »~)-=+i[ +8 — — .+|(i " »&6 ..i] .+|

(7a)

(7b)

(7c)

where the summation in (7a) excludes j=i». . . , i„. The last expression (7c) involves an additional ap-
proximation of neglecting the interaction terms

between the projectile and the previously excited (knocked-out) nucleons. [Again, jej terms are ne-

glected in (7a).]
We may calculate the reactive cross section o„ for our model, using (6) and (1):

o„=C&y, &'I ~U, ly, &')& = Cg,.&y, &')I ~t, lv, ("&, (8)

where bA=—A~ —A; note that P,y,~'i =cp,~'). We evaluate ~t, from (.6) and (7) using an operator relation'
which gives

hA = (1+CA) tb, B(1+ CA) +A ~zCA

for operators A, B, and C such that A =B+BCA. We find

~t, (i„.. . , i„)=t, (i„.. . , i„)~G„„(i„.. . , i„,j)t,.(i„.. . , i„), (10a)

gG „(i„.. . , i„,j) =2wi(1+ U „G „)~5(E-H')P „(1+U„G „)+G„„tg,'b, t,(i„.. . , i„,j)G„„, (10b)

where we have suppressed some particle indices in (1 b). To obtain (10b) we write G„=g„+Q„U„G„,
9„=[P„(E'-H )P„] ', b, 9„=2mi5(E -H' )P„, and use (9). Substituting (10) in (8) recursively, we obtain
the summed form

v(n), (1la)

where

o(n) =[(»)'&~] 2 &Vo"It, ,'[G,'(i, )t;,(ii)l" (1+U„G„F
ill o ~ ~ t 5n

x P g(E H )P (1+ U G ).. . [t. (;,)G, (i,)]t.
= [(2m)'/u] g f l&y„ i(i„.. . , z„)l 7'i+0 '&I'6(E -H, ') dk. .

ij ~ ~ ~ ey $g

(lib)

(1lc)

This is the principal result of this paper, which
is interpreted as follows. The reaction cross
section (8) for the first-order optical potential
U, =g, t, (6) may be written . a. s a sum (lla) of ex-
clusive cross sections into the rith channel with

n nucleons excited. The o(n) involve a series of
inelastic collisions, knocking out nucleons i„.. . ,
i„(lib), which may be written in DW form (llc),
where the transition operator is given by

(1 ld)

with some indices suppressed. We indicate the
integration over the momenta of n nucleons plus
projectile by dk„. The final wave y„has each
outgoing nucleon distorted by the binding poten-
tial, and the projectile by the potential U„(i„.. . ,

i„)due to the residual target. Similar potentials
appear in the propagators G„„.. . , G, in (lid).
There is no interference between different orders
of collision among the n nucleons in (lib) and

(llc); this is lost in the neglect of i ai' terms in

(5) and (7).
So we have shown that the total reaction cross

section O„corresponding to the first-order opti-
cal potential (6) is given by the sum (lla) of ex-
clusive cross sections v(n), each of which is c'al-
culated in a DW approximation, using the t,. of
(7) for inelastic scattering, and U (m (n) for
distortion of the projectile wave. Our t, , although
single-scattering operators (i.e., can excite only
nucleon j), are more complicated than conven-
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tionally used in multiple-scattering theory. How-

ever, the specific form (7b) was required only in
order to derive Eqs. (11). For application of (11)
it may well be possible to compute with simpler
approximate forms of t, (e.g. , impulse approxi-
mation), in which case the sum rule (lla) still
applies, and the 0(n) become conventional DW im-
pulse-approximation cross sections.

If such simplifying approximations can be made
for the i,. when calculating U, in (6), then we may
also obtain an alternative expression for a„, di-
rectly from (8). For example, if we can ignore
the "local field" potential U, (i) in t, in the evalu-
ation of (8), we obtain

x Q(y, '~
~ i; ~P,6 (E -&')P,t, ~ y,") (12)

This formula is equivalent to the result of Tandy,
Redish, and Bolle, ' which expresses 0„ in terms
of a cross section for knockout of a single nucle-
on, but with no distortion of tive outgoing Pxoj ec
file [since U, does not appear in (12)]. Compari-
son with (11) and its interpretation now makes
the meaning of (12) clear: This is the inclusive
cross section for inelastic scattering, corre-
sponding to the first-order optical potential.
Note that the approximation leading to (12) re-
quires that U, (i) not contribute to U, through i,
this does not require that U, (i) be zero or small,
but that. i, not be sensi. tive to U, (i). This condi-
tion would hold a fortiori if the impulse approxi-
mation for I;,. were valid, e.g., at high energies.
The final projectile wave in (12) is not distorted
because that is inappropriate for evaluating an
inclusive cross section. On the other hand, the
exclusive cross section for knockout of a single
nucleon, o'(1) iu (11), is evaluated with optical
distortion of the projectile by U, (i) [in cp, (i)].
[A similar point has been made' for the eikonal
approximation to O„and o(1).] Any flux removed
from the P, channel by U, (i) is fed into the P,
channel, and so on.

The exclusive sum rule (11) for a„must hold
whenever (12) is valid since the assumptions re-
quired for the former are more general than for
(12). However, (11) is only appropriate under the
assumption that the target is uncorrelated, for
which the first-order approximation to the optical
potential U~ is valid. Extensions of the considera-
tions of this paper to correlated targets is com-
plicated by the fact that the decomposition of Q
into channels p'„no longer leads to the continued-
fraction form (5). However, Pauli correlations
(antisymmetry) may be included in the present
formulation, at small extra cost. (Similarly, we
may include bound excited states in the P„.)

In the high-energy approximation, and for a
large target, the results above can be further
simplified, and related to the methods of Glauber. '
More details will be given in a longer report.
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