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of Maryland Technical Report No. 79-040, 1978 (unpub-
lished).

We let k,. (k,.i) be the initial (final) momentum of par-
ticle j. We work in the c.m. frame with the z axis
chosen along the direction of average space momentum
of particle 1. The principal vectors are k, &

= 2(kf+k2 )

(Ef y O, ka ~ kap = 2(kp +kg') = (E),0, —ka) ~ and q = kf kf'
.=(O, q, 0). Throughout this Letter we use the conven-
tions of Bjorken and Drell, Relativistic Quantum I'ields
(McGraw-Hill, New York, 1965).
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A general analysis of the gauge group SU(2) U(l) U'(1) is carried out and models are
constructed that admit positive result for parity nonconservation in electron-deuteron
scattering while giving small parity nonconservation in bismuth.

In view of the recent confirmation of parity non- Present data on v-hadron scattering and e-deu-
conservation in electron-deuteron scattering at teron asymmetry already rule out any multiplet
Stanford Linear Accelerator Center, ' and the assignment other than the standard one of left-
completion of the detailed program' to determine handed doublets and right-handed singlets if one
the neutrino-hadron coupling as reported by Ab- restricts oneself to the group SU(2) U(1). We
bott and Barnett' and by Sidhu and Langacker, ~ therefore examine the question, what models
the case for the Weinberg-Salam (W-S) model' is based on larger groups are still allowed, if any'
greatly strengthened. However, the lack of evi- Since v-hadron data are in excellent agreement
dence for parity nonconservation in the atomic with W-S model, we can restrict ourselves to
physics experiment' on bismuth by Lewis et al. , the groups SU(2) S U(1) 8 G. Since charged-cur-
and only a third of the expected value as found by rent results, too, are in excellent agreement
Baird et al. , is a matter of grave concern. It with%-8, only neutral currents in G are rele-
may well be that there are both experimental' vant. We study the simplest such group: SU(2)
and theoretical problems in relating theory to ex- SU(1)U'(1). " We emphasize that the reason
periment. On the other hand, because the atomic for a general analysis of this type is to see what
physics experiments measure a linear combina- future experiments will serve to rule out such
tion of coupling constants that is almost orthogon- models. As we shall see, the present data al-
ai to the one measured in electron-deuteron scat- ready impose stringent restrictions on such mod-
tering, as emphasized by Bjorken, ' this could els.
herald a significant departure from the %-8 mod- %e first review electron-neutrino and electron-
el, hadron data. If the effective interactions are

written as"
—~2 GF '&. .=[py" (1+ y5)v][ey p(.gg+»y5)e]t

~2 G ~ '2, , (odd par ity) = ey „e[&r» (e, u)u y „y,u + e „„(e,d)d y „y,d]

+ ey "y,et&»„(e, u)uy„u+ &»„(e,d)dy„d], (2)

the electron-neutrino data, admit of two alternative'2 solutions: (a) axial dominant solution, g» = —0.52
+ 0.15, gr = —0.03+0.12; and (b) vector dominant solution, g„=—0.52 + 0.15, g» = —0.03+ 0.12~ The
asymmetry, A, in electron-deuteron scattering is given by"

A/Q' = —3G F(1042 so') [[2e»r(e, u) —s»Y(e, d)]+f (y)[2 &r»(e, u) —e„»(e,d)]), (3)
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(4)

where f (y) =[1-(1-y)2] /[1+ (1 -y)'). The measurement A/Q' = —(95+ 16)& 10 ' (Gep/e) 2 at y = 021
then yields

[2 eA Y(e, u) —eAv(e, d)] + (0.23)[2 &„A(e,u) —evA(e, d)] = 0.89+ 0.15.

Atomic physics experiments measure optical rotation p, which is related to Q~, defined as

Qq, -2[(2Z+ N) eAY(e, u)+ (Z+ ZN)&Ay(e, d)].

For bismuth, Z = 83, N =126, and Q~ = 584[a„„(e,u)+ 1.15&AY(e, d)]. Data indicate"

~Q~) &20 (Lewis et al. ),

Qq, = —34+7 (Baird et al, ),

QR, = —120+ 40 (Barkov).

(5)

(6)

-&2(8G ) 'S=J J++ n'(J +J" )(J" +J" ) (7)

Here J„=J„'-xJ„' is the neutral current in the W-S model, with x= sin'& =g'/(g'+g")'~', Z„"
=- [g"/(g + g'R)"'](M&'/Mzz') J„adne =M&&'/(Mc M~' M«4)-. The 2&2 mass matrix of the gauge
bosons Z, and Z, is given in terms of vacuum expectation values X; of the Higgs bosons by

M, ' = (g'+ g")Q, (r„2)~,', M„' =g"(g'+ g")"'5,(Z'„.Y,.')~, ', M, ' =g "'5,(r, ')2~,2.

We define a quantum number Y" = f Zo d'x. The necessary and sufficient condition that v-hadron scat-
tering be the same as in the W-S model is that Y"(v~) = —2. From Eq. (8) and the definition of Y" it is
easy to verify that this condition is satisfied «t«ally, i.e., for arbitrary values of X;, only if each
Higgs doublet satisfies the condition r'(4';) = —Y'(v~) resulting in

{8)

Yll (g) )

We at first restrict ourselves to only natural models. Assuming LLjt-e universality, the most general
F" assignment of various particles relevant to experiment are

We now examine the group SU(2) I3 U(1) 8 U'(1) and seek models that allow smaller values of QI, . The
generators of this group are taken as T, F, and F', and the gauge coupling asg, g', and g", respec-
tively. We can always choose U(1) such that charge Q=T, + r. We restrict the Higgs structure to ar-
bitrary number of doublets C; and singlets g;, so that the strength of the v-hadron couplings agree with
experiment. The most general neutral-current effective interaction is given by"

Y"(ei) = —2, Y"(es) -r, r '(u„d, ) = P, r'(u, ) = P+-„Y (dR) =P —..
If ez is a singlet under SU(2), y = -1; if a doublet, y can be arbitrary. The effective coupling con-
stants are then

1+&) D-&
gv= —-

2
+Zx, g„=, ~„„(e,u)=-~„„(e,d)=

1. -a Sx, , 1 2x
&&~(e, u) = 1 ——+ «'D(y+ 2) p+2 ——

1-D 4x ', g & x
(e d) = — 1-—+4a'g)(y+-, ) p- —+-Av' ~ 2 3 2 3

where D =0 for e~ singlet and D =1 for e& in a doublet.
We reach the following conclusions:
(a) If eR is singlet: All couplings are identical to W-S model. The only difference is that the mass

of one of the Z y 2 bosons could be much lighter than the W- S value of 86 GeV.
(b) If eR is in doublet: (i) The vector-dominant solution is preferred over the W-S axial-dominant

solution in v-e scattering; (ii) In electron-deuteron experiment, y dependence of the asymmetry is
predicted uniquely, and is more rapid than W-S model. We find for asymmetry

~/Q' = 1.066 x10 "[A(p + ~ -vx) +f(y)(3 —6x)], {12)
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where A. =4o('(y +~). We have plotted these curves
in Fig. 1 for x =0.25. (iii) The value of QI, comes
out to be

Q = 584K [2.15P —0.075 —0.28x].

We prefer the choice P =0 which corresponds
to F'(ul, ) =0. This choice predicts remarkably
Q~ = —43+ 11.83 for x =0.25 in excellent agree-
ment with data of Baird et a/. We further find
X =0.503+ 0.139. This implies that the & boson
would be lighter than in the %-8 model, the ex-
act value depending on the value of y. For y=0,
~z & (0.9) && (86 GeV), where x = 0.25 is assumed.

We have also examined unnatural models"
based on the group SU(2) (3 U(1) U'(1). If two

Higgs doublets@', and @', with Y' quantum num-
bers +1 and the symmetry@', -4', are chosen,
then ~, =A., at the tree level, and there is no &-
C mixing. We can then take the limitM«-0
of Eq. (7). The F' quantum number assignment
is then restricted to

-12

—l4

0.I 0.2 03 0.4 0.5

() g eL)=0, F'(es) =y

F'(u, d ) =P, F'(u ) =P+q, F'(d ) =P+(,
(14)

where lrt I = I)1=1. The coupling g& and g„are as
before. The other couplings are

-I 8

FIG. 1. The y dependence of the electron-deuteron
asymmetry for the natural model considered in the
text. The numbers on the solid lines refer to different
values for A, when p =0 and x = 0.25. The dashed curves
are for the%-S model.

2e„„(e,u) = (1+D —4)x4+n'yq, 2ev„(e,d) = —(1+D —4x) + 4o( yg,
Bx 4x

2m~„(e, u) =(1 D) (1-—+-4ny(2P +q), 2E„~(e,d) =- (1 D) 1-—+4a y(2B+()-, (15)

where o(' now stands for g"'~x'/(g'+g")Mo'.
A general analysis shows that following solutions exist. (a) If e~ is a singlet: (i}axial-dominant e- v

scattering is as in the W-S model; (ii) e-d scattering can be chosen to correspond to the W-S model if
2p +2g —$ =0; and (iii) Q~ can be made arbitrarily small provided q =- $. (b) If e„is in doublet @epee
sentation: This yields solutions for small Q)( identical to Ma, Pramudita, and Tuan" who consider p
=0, q =1, $ =-1. This solution is quite similar to our natural model with e~ in doublet except that
they obtain a more rapidy dependence in e-d scattering and the value of Q)v is -13.14+ 3.5.

We have constructed different models that have the common feature of having a small value of Q~
for bismuth. The most attractive model is the natural model with P = 0. Determination of they depen-
dence of e-deuteron scattering is crucial to establish this model. Improvement on v-electron data will
also serve to check the doublet assignment of e&. It is harder to test an unnatural model with e& a
singlet. Observation of parity nonconservation in other atoms, especially light atoms, can serve to
distinguish this model from W-S theory.
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Excitation energies, spins, and parities have been determined for ' Dy in (HI, xn) re-
actions up to I~=27+. Three isomers with T&~& ——49.5 ns (F.„=5035keV, I~=16+), 9.'9 ns
(F.„=6076keV, I"=20 ), and 1,6 ns (E„=7828keV, I~=26 ) have been found. The g
factor of the second isomeric state was measured to be g=0.55+0.06. The present ex-
perimental data compares well with microscopic calculations which imply an oblate shape
for ' Dy at high angular momenta (I~- 16+).

Recently, a great deal of theoretical work has
been devoted to the study of yrast traps occuring
at high and very high spins. Systematic experi-
mental search for delayed y-ray cascades has
shown the existence of high-spin isomers' belong-
ing to nuclei situated around the neutron number
pf = 82. Theoretical calculations' ' have pointed
to this region of isotopes as being especially
favorable for the occurrence of yrast traps based
on the oblate-coupling scheme. However, some
isomers can be explained as shell-model isomer-
ic states. ' ' Detailed spectroscopic work on the
high-spin isomers is therefore essential for a
better comparison with the calculations. In this
Letter we report on the existence of three high-
spin isomeric states in "Dy. Their spins, pari-

ties, lifetimes, and decay properties have been
established by y-ray spectroscopic methods. The
g factor of the second isomeric state (E„=6076
keV) has also been determined. The investigation
of the nucleus ',",Dy„by Jansen et a/. ' has al-
ready shown the existence of an isomer of Ti/2
=60 ns at E„=5 MeV with 15 ~I ~18. Theoretical
calculations of Cerkaski et al. ' predict at least
three yrast traps in this nucleus.

The nuclide "'Dy has been produced at high
angular momenta by means of the heavy-ion reac-
tions '4'Ce(»0, 4n)"'Dy (E»o= 88 MeV) and "'Pr-
("N, 4n)'"Dy (E»N=80 MeV) at the Strasbourg
MP accelerator. In-beam y-spectroscopic ex-
periments were performed using a variety of
Ge(intrinsic), Ge(Li), and Si(Li) spectrometers,
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