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phasons" is observed there, and a more com-
plete picture of phasons in potassium would be
possible.
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Quantum kinetic equations for describing transport in submicron semiconducting de-
vices in the finite collision duration regime are developed which are nonlocal in time and
momentum. Utilizing a projected self-scattering formulation, a retarded path-integral
equation is obtained. Quantum kinetic equations are usually exceedingly difficult to solve.
The formulation found here presents a powerful technique to achieve these solutions even
in the case where nonlocal effects are important.

The Boltzmann transport equation (BTE) has
long been the basis for semiclassical transport
studies in semiconductors and other materials.
Its utility also stems from the fact that it is
readily transformable into a path variable form
which can be adapted to numerical solutions for
complicated ener gy-dependent scattering proc-
esses. ' ' In this form, the BTE is often referred
to as the Chambers-Bees path-integral equation,
and serves as the basis for Monte Carlo4 ' and
iterative' ' calculations of transport. However,
the BTE is valid only in the weak-coupling limit
under the assumptions that the electric field is
weak and slowly varying at most, the collisions
are independent, and the collisions occur instan-
taneously in space and time. Each of these ap-
proximations can be expected to be violated in
future submicron-dimensioned semiconductor
devices. We have previously shown that in such
devices, the time scales are such that collision

durations are no longer negligible when compared
to the relevant time scale upon which transport
through the device occurs. ' '" In this situation,
even for time-independent fields, the quantum
kinetic equations are nonlocal in time and mo-
mentum. It may be recalled that the BTE can be
rigorously derived from the density-matrix
Liouville-equation formulation of quantum trans-
port. "'" Here, we draw upon that formulation
for a retarded-time kinetic equation, which re-
places the BTE, and show that by introducing a
projected self-scattering process, a retarded
path integral can be developed. The power of this
technique allows a single path integral to be used,
rather than the expected multiple retarded path
integrals.

If the instantaneous collision approximation is
relaxed, an additional field contribution appears
as a differential superoperator term in the colli-
sion integrals evaluated in the momentum repre-
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sentation, resulting in an intraeollisional field
effect. " " This effect is important either when
the field is large or when the collision duration
is a significant fraction of the mean time between
collisions, and has previously been analyzed for
steady-state transport in uniform, time-. indepen-
dent fields. "'" In the steady-state ease, the
intracollisional field effect induces a broadening
and skewing of the usual energy-conserving ~

functions. This leads, e.g. , to a lowering of the

threshold for phonon emission due to acceleration
during the collision and to a reduction of scatter-
ing strength at high fields. As we mentioned
above, the quantum kinetic equations are then
nonlocal in time and momentum. As a conse-
quence, the energy conserving 5 functions which
appear in the "golden rule" transition rates are
replaced by path integrals over the time t into a
collision. The earlier analysis, extended to time-
varying fields, leads to a high-field quantum
kinetic equation, which replaces the BTE, as

&f(p, t)/&t+eE(t) ~ v
Pf(p, t) = 1 dt'Q (S(p, p'; t, t')f(p', t') —S(p, p', t, t')f (p, t')],

I

vrhere the momenta p and p' are explicit functions of the retarded time t' on the right-hand side through
the relationship

p(t') =p —J,eE(t")dt", (»)
p'(t') =p' —1' eE(t")dt", (2b)

and the transition terms S take the form, for inelastic phonon scattering,

S(p, p';t, t') =Re —Q —exp — (Nq+ 2+2') I l'(q) I'5, , ~ + &-„exp iJ p(p, -p', t"),
Tr

P(p, p'; t") =- h [p(t")]—h[p '(t")]+ qS(u q. (4)
S*(p p' t t')

The exponential factors in (3) are the joint spec-
tral density function (the term rr represents the
joint collision broa. dening of states p, p' against
all scattering process"), which reduces to an
energy-conserving 5 function in the instantaneous
collision, low-field limit, " "and h(p) is the
quasiparticle renormalized electron energy, and

g takes the values + 1 or -1 for phonon emission
or absorpiton, respectively, in the in-scattering
term. For the out-scattering term, the roles of

- p and p' are interchanged, although this does not
upset detailed balance in the equilibrium sense.

The nonlocal equation (1) cannot be immediately
written as a Chambers-Bees-type path integral
because of the inherent retardation of the out-
scattering term. " Therefore, the numerical
evaluation of (1) remains a formidable task. How-

ever, by generalizing the concept of the self-
scattering process, we can obtain a relatively
simple path-integral formulation for the distribu-
tion function f(p, t) which is similar in form to
the more usual path-integral formalism for the
BTE, and hence is readily amenable to numerical
iterative analysis. To accomplish this, we add
and subtract identical terms to the right-hand

= s(p, p'; t, t')+ [r(t, t') - r...( tt')]&(p p')], (5)
t

where

r„,(t, t') -=P-, „s(p,p"; t, t'),
and

r(t, t') -=r, 5(t- t'),
with Fo a positive constant selected by conven-
ience of convergence criteria. The self-scatter-
ing terms in the square-brackets of (5) make no
contribution to the collision integral, but the
term in F,„,plays an important role. This term
effectively projects out of F the contribution due
to uncompleted out-scattering and the retardation
in the out-scattering is accounted for here rather
than in the term involving f(p, t) The kinet. ic
equation (1) may then be written

[(s/st)+eE(t) v-, + r, ]f(p, t)

=pp J, dt' s*(p, p'; t, t')f[p'(t'), t'], (8)

which may now be solved by the method of charac-
teristics" to obtain the path-variable structure

f (p, t) = f dt'exp[- r,(t —t')]G(p; t, t'), (9)
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where
g

I

G(p; t, t')=p-, .f dt" S*tp(f"),p'(f); t', t "j f[p'(t"), f"].
P p

In the limit of long times t »0, instantaneous col-
lisions, and no quasiparticle effects from the
field, (9) and (10) reduce to the normal path-inte-
gral form of the BTE.

It is worth noting here that although a Feynman
path-integral approach has also been developed
for quantum transport, "its applicability has only
been demonstrated for strong-coupled polar opti-
cal scattering and is much more difficult to apply.
The desirability of Eqs. (9) and (10) lies in their
structural similarity to path integrals obtained
from the BTE, and thus techniques used for these
can readily be adapted to the present quantum
transport equations. For example, this pair of
equations form the basic set to adopt in iterative
solution for f(p, f).' ' Moreover, nonlinear scat-
tering processes, such as carrier-carrier scat-
tering, are readily incorporated into the iterative
approach. Monte Carlo techniques can also be
used to find the distribution function, although
care must be exercised in treating transient solu-
tions. This latter follows also for the BTE, since
the basic times involved are assumed long com-
pared to fluctuation periods, so that the equations
are almost deterministic. Monte Carlo reintro-
duces significant fluctuations into transient calcu-
lations, so that such calculations as recently per-
formed, "must be carefully interpreted and be
averaged over a great many trials.

In summary, our generalization of self-scat-
tering, as contained in Eqs. (6) and (i), to in-
clude the time-dependent out-scattering terms
through a time-dependent self-scattering effect.
As a result, single path-variable equation is ob-
tained that is functionally similar to that obtained
from the BTE. Care should be exercised, how-

ever. In dealing with quantum kinetic equations
and the density matrix, off-diagonal terms can
arise, and while these -can be handled by projec-
tion-operator techniques, ' "the detailed nature
of S(p, p', t, t') can be significantly different from
the more normal forms in any but the weak-coup-
ling limit. While it might be though that these
effects will only be found in devices many genera-
tions away from current-day practice, we show

in detailed calculations, to be published else-
where, the finite-collision-duration modifications
are, in fact, important in any situation in which
transient dynamics of electrons are important.
This means that overshoot-velocity effects, as
recently calculated for GaAs field-effect transis-
tors,"are strongly affected by the effects dis-
cussed here.
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