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Analysis of the Anomalous Temperature-Dependent Resistivity on Potassium below 1.6K
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Recent precision measurements of the resistivity of potassium between 0.38 and 1.6 K
revealed a surprising T 5 temperature dependence. We show that scattering of electrons
by phasons —the collective excitations of an incommensurate charge-density wave —can
provide an explanation.

Recent measurements by Rowlands, Duvvury, by the Bloch-Gruneisen formula if phonon-drag
and Woods, ' indicate the presence of an anomal- effects are important. Electron-phonon umklapp
ous contribution to the resistivity of potassium, scattering, which is essentially unaffected by pho-
which, if fitted to a pure power law, varies as non drag, contributes a term at low temperatures
T". Previously proposed mechanisms that con- of the form BT~exp(-h&uo/&ET), where cu, is the
tribute to the resistivity at low temperatures, in- frequency of the phonon with the minimum wave
eluding electron-phonon and electron-electron vector that allows participation in an umklapp
scattering, yield curves of resistivity versus process. Electron-electron scattering produces
temperature that are the wrong shape to explain the term CT' at all temperatures.
this high-precision data. As a resolution of -this The relative importance of each of these mech-
difficulty, we propose a new mechanism scatter- anisms is revealed by examining the low temper-
ing of electrons with phasons, the collective ex- ature resistivity data in potassium. Highly ac-
citations associated with phase modulation of a curate measurements4' exhibit an exponentially
charge-density wave. We will see that this as- decaying resistivity with decreasing temperature
sumption leads to the prediction of a temperature- below about 4 K, supporting the electron-phonon
dependent resistivity that is in good agreement umklapp scattering mechanism and lending cre-
with the data. dence to the concept of phonon drag. Below 2 K,

Conventional studies of the resistivity of a met- however, significant deviations from exponential
al at low temperatures yield the fo11owing con- . behavior have been observed, suggesting the
tributions': presence of an additional scattering mechanism.

In order to discover the characteristic behavior
of this additional mechanism, one must first sub-

where po is the residual resistivity. The term tract the known electron-phonon umklapp contri-
AT' results from normal electron-phonon scatter- bution from the data. Unfortunately, the form of
ing in the low-temperature limit. It may be great- this umklapp term below 2 K is not well deter-
ly reduced in magnitude from the value predicted mined. While van Kempen et al. have fitted
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their data between 2 and 4 K with the form of the
exponential term in Eq. (l) with p = I and 0 =K(u, /
k~ =19.9, Kaveh, Leavens, and Wiser, ' have
pointed out that other values of P and 0 could al-
low equally good fits to these data. We avoid this
uncertainty by considering only data below which
the electron-phonon umklapp term becomes negli-
gible, i.e., below about 1.3 K.

We now turn to a discussion of the new anomal-
ous temperature dependence of the resistivity,
as shown by the data of Ref. 1, pictured as circles
in Fig. 1, with the lowest point defining the zero
of resistivity. The two highest points, above
1.3 K, are displayed to illustrate the residual in-
fluence of electron-phonon umklapp scattering on
these points. The dashed arrows show the amount
that one would subtract if the parameters ob-
tained by van Kempen et al.4 are used. A solid
curve has been drawn through all but these two
highest data points. For convenience, we will
call this curve p(phason), with the significance
of this designation becoming apparent later.
There is no evidence for a T' contribution. Elec-
tron-electron scattering has been proposed as a
possible explanation of the data, '4 but this must
vary exactly as T' and does not allow for the ob-
served dependence. This can be seen most clear-

ly in Fig. 2, where we show the difference be-
tween the shape of the curve defined by the data
and attempts to fit it with pure power laws. Be-
cause of the scatter in the data, we find it con-
venient to use p(phason) as a reference, or the
horizontal line in Fig. 2, and plot p -p(phason),
where p is either the data (circles) or T, T",
and T' curves that pass through the first and last
data points below 1.3 K. Clearly, the T' curve is
the wrong shape to fit the data and describes the
data as poorly as a straight line (the curve la-
beled T) ~ If one desires the best-fit power law,
that would be T", as was first suggested by Row-
lands, Duvvury, and Woods. ' Thus, it seems
that electron-electron scattering must be ruled
out, at least as the principal mechanism, and a
new scattering mechanism must be invoked.

As an explanation of this anomalous tempera-
ture dependence of the resistivity, we suggest
the mechanism of electrons scattering from pha-
sons, collective excitations corresponding to
phase modulation of a charge-density wave (CDW).
The proposal of a CDW ground state in potassium
has provided successful and consistent explana-
tions of other anomalies, which have recently
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FIG. 1. Plot of resistivity vs temperature for the
data of simple K2C of Howlands, Duvvury, and %'oods

(Ref. 1), indicted by circles. The dashed box has been
enlarged and foreshortened in the inset. The curves
and arrows are described in the text.

FIG. 2. Plot of resistivity subtracted from p(phason),
the smooth curve through the data in Fig. 1. The data
of Fig. 1 are shown as circles scattered about the hori-
zontal line p(phason). Curves labeled T, T, and T
are the corresponding pure power laws that pass
through the first and last data points below 1.3 K.
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been reviewed. ' Phasons have been considered in other contexts and several of their properties have
been described. ' " Of particular interest here, the electron-phason interaction has been derived to
be of the form'

(2)

(d Cii gii y e~ —
ASCII 9'rp/k8i

where c~~ and qi~ are the phason velocity and wave
vector parallel to Q. Here, the phason space is
approximated by a pillbox of width q~ along Q.

The temperature-dependent resistivity due to
electron-phason scattering along each principal
axis was calculated with "golden-rule" perturba-
tion theory using the potential of Eq. (2). Results
were obtained via a variational solution of the
Boltzmann equation, assuming the Fermi surface
to be rigidly displaced in k space by the electric
field. " For the simple model described above,
the resistivity can be expressed in terms of
Bloch-Gruneisen functions 8„(x) as

V, ~= —,'GS y„-fos[@+Q) r —~~ t] —cos[(@-ig r —u&~ t] j,

where Gcos(Q r) is the total self-consistent po-
!tential and Q the wave vector of the static CDW. as

y-, e-„, and g are the magnitude, frequency, and
wave vector of the phason, respectively.

A phason is actually a normal mode of the lat-
tice whose frequency is zero at the point Q in the
Brillouin zone and varies linearly with (1 away
from that point, with the velocity in the direction
of Q much greater than that perpendicular to Q.
For simplicity, we assume a Debye-like model
and choose a cutoff that reflects the anisotropy of
the phason spectrum such that the occupied pha-
son space is small compared to the Brillouin
zone. In addition, we assume extreme anisotropy
of the phason spectrum, postponing the more gen-
eral case to a longer, more extended paper. We
thus define a phason frequency and temperature

(4)

where

z dz
(e' —&)(&- e ') '

The expressions for the three coefficients in
Eq. (4) are complicated and their magnitudes de-
pend on the phason anisotropy, as well as on the
distribution of Q domains throughout the sample.
In fact, the magnitude of the observed anomalous
temperature dependence of the resistivity varies
from run to run and sample to sample and seems
to be related to the magnitude of the residual re-
sistivity, which also depends on @-domain struc-
ture. " For this reason, we defer discussion of
these coefficients to a more extended paper and

direct our attention here only to the shape of the
resistivity curve as a function of temperature.
For this reason, we have fit the data in Fig. 1
separately with each of the three terms in Eq.
(l), e.g. , using the form p, +P(T/e~)'8, (e~/T).
Each term individually fits the data as well as
the other two, but with different parameters.
The excellence of the fit can be seen in Fig. 1,
where the smooth curve through the data can now

be identified with the result of fitting with the 8~
term.

Results for the 82 and 8, terms would be indis-

tinguishable in Fig. 1 from the 84 curve in the re-
gions of the data, but their extrapolations to low-
er temperatures differ. These are shown in the
inset of Fig. 1, along with the extrapolation of
the pure power law 7'" identified in Fig. 2. The
phason temperatures needed for the fit are O~
=3.43 K for 84, 8 ~ =4.58 K for 8» and e~ =4.85 K
for 8,. The phason temperature and extrapolation
below the lowest data point for the true combina-
tion of terms in Eq. (4) would lie between the val-
ues for the separate terms. On the other hand,
the T" curve lies well below these other curves
in the ultralow-temperature region. Therefore,
it is extremely important that ultralow-tempera-
ture resistivity measurements be done in order
to determine the precise shape of the curve. IX

the data would fall on the T" curve, this would
eliminate electron-phason scattering as the ex-
planation for the anomalous contribution to the
resistivity. On the other hand, if the data would
lie in the region of the graph between the 8, and

8, curves, further information could be obtained
about the values of the phason temperature e ~
and the phason cutoff q~. This information could
be coupled with determinations from specific-
heat experiments if the predicted signature of
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phasons" is observed there, and a more com-
plete picture of phasons in potassium would be
possible.

The authors would like to express sincere
thanks to J. A. Rowlands for providing the data
shown in Figs. 1 and 2 and for many useful dis-
cussions. In addition, the authors are grateful
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Quantum kinetic equations for describing transport in submicron semiconducting de-
vices in the finite collision duration regime are developed which are nonlocal in time and
momentum. Utilizing a projected self-scattering formulation, a retarded path-integral
equation is obtained. Quantum kinetic equations are usually exceedingly difficult to solve.
The formulation found here presents a powerful technique to achieve these solutions even
in the case where nonlocal effects are important.

The Boltzmann transport equation (BTE) has
long been the basis for semiclassical transport
studies in semiconductors and other materials.
Its utility also stems from the fact that it is
readily transformable into a path variable form
which can be adapted to numerical solutions for
complicated ener gy-dependent scattering proc-
esses. ' ' In this form, the BTE is often referred
to as the Chambers-Bees path-integral equation,
and serves as the basis for Monte Carlo4 ' and
iterative' ' calculations of transport. However,
the BTE is valid only in the weak-coupling limit
under the assumptions that the electric field is
weak and slowly varying at most, the collisions
are independent, and the collisions occur instan-
taneously in space and time. Each of these ap-
proximations can be expected to be violated in
future submicron-dimensioned semiconductor
devices. We have previously shown that in such
devices, the time scales are such that collision

durations are no longer negligible when compared
to the relevant time scale upon which transport
through the device occurs. ' '" In this situation,
even for time-independent fields, the quantum
kinetic equations are nonlocal in time and mo-
mentum. It may be recalled that the BTE can be
rigorously derived from the density-matrix
Liouville-equation formulation of quantum trans-
port. "'" Here, we draw upon that formulation
for a retarded-time kinetic equation, which re-
places the BTE, and show that by introducing a
projected self-scattering process, a retarded
path integral can be developed. The power of this
technique allows a single path integral to be used,
rather than the expected multiple retarded path
integrals.

If the instantaneous collision approximation is
relaxed, an additional field contribution appears
as a differential superoperator term in the colli-
sion integrals evaluated in the momentum repre-
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