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The Kramers-Kronig equivalent of this critical at-
tenuation gives rise to a term for the elastic constant
whose estimated value is at least five orders of magni-
tude below the piezoelectric term (7) and is thereforenegligible�.
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A nonlinear theory of the capillary waves accounts for the macroscopic lattice formation
on the electron-charged surface of liquid helium observed in a recent experiment. The
lattice allows both shear and compressional lattice waves to propagate.

There has been a great deal of interest in sys-
tems consisting of a layer of electrons on the
surface of liquid helium. Recently, Wanner and
Leiderer' found experimentally that a macro-
scopic dimple lattice was created at an electron-
charged interface between 'He and 'He. The the-
ory presented here accounts for most of the ob-
served results. A preliminary discussion of the
present problem was given by Gor'kov and Cher-
nlkovae

Consider the liquid helium filling a volume -z,
- z ~ O. The surface of the liquid is in the x-y
plane (z =0) when it is not disturbed. The surface
of the liquid is charged with electrons. The elec-
tric field (E, at z & 0, and E at z & 0) is applied
in the vertical, z, direction to bind the electrons
to the surface.

The nonlinear dispersion relation of the capil-
lary waves of frequency co, as a function of the

wave vector%, is given by''

~'$) =g! %!

—(&/4&p)(E, '+E ') I&I'+ (r/p) I&I', (&)

where p is the density of the liquid, g the gravity
constant, and v' the surface tension. The Rayleigh-
Taylor instability grows, i.e. , &u'& 0 near !%!=k„
when 2(E+'+E ') & 4mgp/k„where k, ' =pg/7'. The
nonlinear behavior of this instability will be ana-
lyzed here.

It is assumed that the liquid is incompressible
and that the electrons redistribute instantaneous-
ly in such a way that the electrostatic potential
is always constant along the surface. The large
electron mobility ensures that latter assumption.
By employing the basic equations and the proce-
dure described by Mima and Ikezi, ' the equation
governing the surface deviation, z =a(X,y, t), is
found to be

g —a ~ p a+ —[2PTaPTa -2aP a+(PTa) +a„+a, ]
P E,'+E ', (E+'-E ') P 2 2 2 2

4n' p Snp T

+ + + —[PT(- 2 a'p'a +aPTaPTa -aP'a PTa) + 2 a'P'Ta + (a„' +a, ')PTa
4np T

~(PTa)(PTapT a -ap'a)]

+-—[a„„(].——,a„--.a, )+a,„(l--.a, --.a„)-2a„a.a,l.7 P 3 2. & 2 3 2 ~ 2 (2)

Here, P and T are operators defined by

P'=-V, '=- (8'/sx'+8'/ay'),

and T = coth(z, p), the suffixes x, y, and t indicate
partial derivatives with respect to those varia-
bles, and the P and T enclosed in ( }do not oper-
ate outside of the heavy parentheses. The linear

!
terms of this equation give us the dispersion
relation (1). The nonlinear terms which are im-
portant for discussing the Rayleigh- Taylor insta-
bility are retained.

Because the parameter range of interest is
2(E,'+E ')-4&gp/k, and $!-ko, the waves of the
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form k~ =Q, E, (r, t) exp(i%,. ~ r) are considered
The E,. 's are slowly varying functions of r and I;,
and ~%, ~

=k, . Of the many unstable waves, let us
consider three waves E„E„andE„which satis-
fy arccos(%, %,/k, k, ) =arccos(%, %,/k, k, ) =m
Only when this relation is satisfied, do the wave
vectors meet the matching condition%, +%, =%,
and the waves parametrically couple in the sec-
ond-order term of Eq. (2). The combinations (R„

%„-%,), $„-%„-%,), etc. , also satisfy the
matching condition. Therefore, we need to con-
sider six waves

k~ = Q[E, exp(i%, ~ r)+E J exp(-i%, ~ r)), (3)
q=a

which couple and grow together. Substitution of
Eq. (3), together with nonlinearly driven waves,
into Eq. (2) yields six coupled equations in the
deep-liquid limit, z,-~:

(gko) '[E„, v-(k, ~ V) E,] =2aE, +SpEQ 3- fy,E,E,+y2(F F yFp, )]F„

ative, and the R'
he instability. As

y ove to the bottom
of the liquid.

Figure 2 shows the equal-height contours of
a(x', y) when R =R and 8& =Q. The bottom of the
dimples, labeled by A. , makes a triangular lattice,
and the peaks of the surface, labeled by B, form
a hexagonal structure. We have three phases 8„
8„and 8„but two of these are independent be-
cause of restriction (8). One can easily find that
the introduction of the phases simply causes a
parallel translation of the lattice, if 8& is indepen-
dent of r. For instance, if 8, =0 and 8, =-8, then
the whole structure moves by 28,/k, &3along the
direction perpendicular to k, . When 8,. is a func-
tion of r, but satisfies k,. ~ V8~ =0, Eqs. (7) and (8)
are still unchanged. Using%, +%, =E, and 8, +8,
=8„we find 8~ =5k(k&xz) ~ r, which introduces a
rotation of the lattice structure through 5k/k, ra-

F, =R(t) exp[-i8, (r)].
If k, V8& =0 andE

&
is the complex conjugate of

E, , then

8, +83 =82

(gk, )- '-.'(R,)'+ U(R) = W, (7)

where

U = —aR -PR +a yR,

y =y, +2y2, and %=const.
When a & 0, the system is linearly unstable.

The term —pR' in U accelerates the instability
when R & 0, and the term &yR4 stops the instabili-
ty when y&0, which occurs when —0.27&P & Q.

We have two minima of U at

R, = (1/2y)[SP ~ (9P'+8ay)""];

(gko) '[E2„vg-(k2 ~ V) E2] =2aE2+SpE,E, —[y,Ep' 2+y 2(FF, +Eg )]E, etc. ,

where vg'=g/k„a =2(E,'+Z ')/(4mgp/k, ) —1, P

=(E+'-E-')/N+'+& )&0, y, =2 —80', y, =8(2 that p&-0.27, y becomes neg
—~3) —1 —(57~3- 72)P /(4~3 —8), and ~; =~~/k, . term in U does not stabilize t

A solution is now sought of the form a result the electrons ma m

R =R, are the static solutions of Eq. (7). By us-
ing Eq. (4), we can show that a small disturbance
satisfying i' =+ (F, , —R, ) =+ (F„-R+)=+ (F„
-R, ) grows when 5E is a real quantity. There-
fore, R =R+ is an unstable solution. It was con-
firmed that any small disturbances imposed on

R =R did not grow. When a&0 andy) 0, minima
of U appear at R =0 and R =R . Because these
two states are stable, we have a sudden onset of
R (=SP/y) when a is changed from a negative
value to a positive value (see Fig. 1). The equi-
librium switches back to R =0 from R =R when
a is decreased to —QP'/8y. This width of hyster-
esis in o. is typically 10 ', so that very careful
experimentation is necessary to observe the hys-
teresis. When the charge density is too large so

sP 2
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FIG. 1. Amplitude of lattice, A, as a function of e.
Thick lines indicate stable solutions.
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K&k, . The relation between the phases, 8, =0
and L9, +9, =0, indicates that the dimple displace-
ment is perpendicular to k, . Therefore, the wave
propagating along k, is the shear wave and the
one propagating perpendicular to k, is the com-
pressional wave. From I., =0, the dispersion
relations for the shear and the compressional
waves are found to be

n' =-'u 'IKI' and n' = -', v, 'IKI' (13)

-2%~0 2&ko

FIG. 2. Equal-height contours of the surface when
the lattice is formed. A and B indicate the location of
the bottom and the peak, respectiveIy. The contours
equally divide the height. 9i =02=63=Q.

dlans.
The dimple lattice allows the lattice waves to

propagate through it. Let us introduce space-
time-dependent phases and discuss the perturba-
tion

I'& =R exp[-iB&(r, t) j=R [1-i8&(r,t)j. (10)

L,L,L, +3pR (L,L, +L2L, +I SL,) =0. (12)

An interesting case occurs when 0, =0, +9,. The
dimple depth is kept constant when this restric-
tion is met. In order to have at least one nonzero
9~, say H„we need L,, =0 and one of L, and L, .

must be zero; I chose L, = 0 and L, 4 0 without
losing generality. We then find from (11) that 8,
=0, 8, =-B„and (k, +k, ) ~ K=O, so that Kiik, or

Substituting this expression into (4) and assuming
8~-exp(i% ~ r iQt) -and 8 j=—8;, we obtain

L,B, = L282 = L,83 = 3pR (82 —8~ —8,),
where L, = (gk, ) '[-0 +v, '(k,. ~ K)'j . The condition
to obtain the nontrivial solution of (11) yields the
dispersion relation

The symmetry of the lattice constrains the
shear waves to propagate in the six directions
1+k„ak„+k,J and the compressional waves to
propagate along j+ (k, +k,), + (k, +k, ), + (k, —k,)j.
The observation of these lattice waves is very
easy because the frequency is typically a few
hertz.

Although only the liquid-vapor system has been
analyzed, our theory applies to the 'He-'He sys-
tem if p, +p, and g(p, -p, )/(p, +p, ) are substituted
for p and g. In the liquid-vapor system, the ex-
periments have to be done below the X point;
otherwise the boiling of the liquid' disturbs the
surface. '

The author appreciates numerical work done by
B. C. Chambers and discussions with D. S. Fish-
er, C. C. Grimes, A. Hasegawa, P. M. Platzman,
and C. M. karma.
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