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1"The Kramers-Kronig equivalent of this critical at-
tenuation gives rise to a term for the elastic constant
whose estimated value is at least five orders of magni-
tude below the piezoelectric term (7) and is therefore
negligible.
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Macroscopic Electron Lattice on the Surface of Liquid Helium

H. Ikezi

Bell Labovatovies, Murvay Hill, New Jevsey 07974
(Received 4 April 1979)

A nonlinear theory of the capillary waves accounts for the macroscopic lattice formation
on the electron-charged surface of liquid helium observed in a recent experiment. The
lattice allows both shear and compressional lattice waves to propagate.

There has been a great deal of interest in sys-
tems consisting of a layer of electrons on the
surface of liquid helium. Recently, Wanner and
Leiderer' found experimentally that a macro-
scopic dimple lattice was created at an electron-
charged interface between *He and *He. The the-
ory presented here accounts for most of the ob-
served results. A preliminary discussion of the
present problem was given by Gor’kov and Cher-
nikova.?

Consider the liquid helium filling a volume -z,
<z <0, The surface of the liquid is in the x»
plane (2 =0) when it is not disturbed. The surface
of the liquid is charged with electrons. The elec-
tric field (£, at z>0, and E. at 2<0) is applied
in the vertical, z, direction to bind the electrons
to the surface.

The nonlinear dispersion relation of the capil-
lary waves of frequency w, as a function of the

2 2 2_g 2
E.“+E_ P2a+(E+ E. )B[

Gu=—8pa+t 4rp 8mp T
2 2
+E+ +E. £[
4mp T

TP
+F—)-T—[a,,(1 ~-%a,2~%a,%) +a,,(1-3%a,?

Here, P and T are operators defined by

P?=—v, %=~ (0%/8x%+0%/3y?),

and T =coth(z,P), the suffixes x, y, and { indicate
partial derivatives with respect to those varia-
bles, and the P and T enclosed in () do not oper-
ate outside of the heavy parentheses. The linear
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wave vector k, is given by* *
w?(k) =g| &I
- (1/41p)(E .2 +ED)[KIZ + (r/p) K, (1)

where p is the density of the liquid, g the gravity
constant, and 7 the surface tension. The Rayleigh-
Taylor instability grows, i.e., w2<0 near [k| =&,
when 3 (E 2 +E_2)>4ngp/k,, where k,2=pg/7. The
nonlinear behavior of this instability will be ana-
lyzed here.

It is assumed that the liquid is incompressible
and that the electrons redistribute instantaneous-
ly in such a way that the electrostatic potential
is always constant along the surface. The large
electron mobility ensures that latter assumption.
By employing the basic equations and the proce-
dure described by Mima and Ikezi,’ the equation
governing the surface deviation, z =a(x,y,t), is
found to be

2PTaPTa - 2aP% +(PTa)? +a,% +a,?]

PT (- :a?P%a +aPTaPTa - aP’aPTa) +:a*P*Ta +(a,* +a,*)PTa

+(PTa)(PTaPTa —aP%)]

-3a,%)-2a,,a,a,]. (2)

terms of this equation give us the dispersion
relation (1). The nonlinear terms which are im-
portant for discussing the Rayleigh-Taylor insta-
bility are retained.

Because the parameter range of interest is
3(E,2+E_?)~4n1gp/k, and |k| ~k,, the waves of the
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form kg =), F,;(r,t) exp(ik, +T) are considered.
The F;’s are slowly varying functions of Tandt,
and |k, | =k,. Of the many unstable waves, let us
consider three waves F,, F,, and F,, which satis-
fy arccos(k, «k,/k,k,) =arccos (&, - K,/ k,) =37.
Only when this relation is satisfied, do the wave
vectors meet the matching condition k, +k&, =k,
and the waves parametrically couple in the sec-
ond-order term of Eq. (2). The combinations (k,,

k,, -k, &,,-k,~-k,), etc., also satisfy the
matching condition. Therefore, we need to con-
sider six waves

ko= DI, explk, - F) +F.  exp(~ 1K D), ()

which couple and grow together. Substitution of
Eq. (3), together with nonlinearly driven waves,
into Eq. (2) yields six coupled equations in the
deep-liquid limit, z,- c:

(gko) I[Fltt —ng(’}1 * V)zFl] =20F  +3BF,F.;— [71F1F- L +Yo(FyF ., +FF. 3)]F1,

(gho) H[F o _ng@z'v)zF2]=2an+3BF1F3 - [YIFZF-2+)/2(F1F-1 +F F_)|F,, etc.,

where v, % =g/k,, a =3(E,2+E.?)/(4ngp/ky)—1, B
=(E+2 "'E-z)/(E+2 +E-2)<0, Y1 =%"'832, 7’2:8(2
-V3) =1 - (57V3 - 72)8%/(4V3 - 6), and k, =k, /k,.

A solution is now sought of the form
F,;=R()expl-i6,{F)]. (5)

If 2, +V0; =0 and F_; is the complex conjugate of
F;, then

6,+6,=0, (6)
and

ko) 'z (R +UR) =W, (7)
where

U=-aR?-BR®+iYR*, (8)

Y =y, +2y,, and W=const.

When a >Q, the system is linearly unstable.
The term —BR? in U accelerates the instability
when R<Q, and the term fyR* stops the instabili-
ty when y >0, which occurs when - 0.27<g<Q.
We have two minima of U at

R, =(1/2y)[38 + (982 +8ay)"?]; (9)

R =R, are the static solutions of Eq. (7). By us-
ing Eq. (4), we can show that a small disturbance
satisfying i0F =+ (F,, —R,) =+ (F,;—R,) =% (F,,
~R,) grows when 0F is a real quantity. There-
fore, R =R, is an unstable solution. It was con-
firmed that any small disturbances imposed on

R =R. did not grow. When <0 and y>0, minima
of U appear at R =0 and R =R.. Because these
two states are stable, we have a sudden onset of
R. (=38/y) when a is changed from a negative
value to a positive value (see Fig., 1). The equi-
librium switches back to R =0 from R =R. when

a is decreased to — 982/8y. This width of hyster-
esis in a is typically 1072, so that very careful
experimentation is necessary to observe the hys-
teresis. When the charge density is too large so

4)

that B <-0.27, v becomes negative, and the R*
term in U does not stabilize the instability. As
a result, the electrons may move to the bottom
of the liquid.

Figure 2 shows the equal-height contours of
alx,y) when R =R._ and 6; =0. The bottom of the
dimples, labeled by A, makes a triangular lattice,
and the peaks of the surface, labeled by B, form
a hexagonal structure. We have three phases 0,
6,, and 6,, but two of these are independent be-
cause of restriction (6). One can easily find that
the introduction of the phases simply causes a
parallel translation of the lattice, if 6; is indepen-
dent of ¥. For instance, if §,=0 and 6, == 6, then
the whole structure moves by 291/k0\/3_ along the
direction perpendicular to E,. When 6 ; is a func- ~
tion of T, but satisfies &,+v6,;=0, Egs. (7) and (8)
are still unchanged. Using k, +k; =k, and 6, +6,
=0,, we find 6, =5k (k;X2) +T, which introduces a
rotation of the lattice structure through Gk/ko ra-

R

932 |

a=-

R=R, (UNSTABLE)

R=0
(STABLE)

.
o

\ 3B
R*Y

4

R=R_ (STABLE)

FIG. 1. Amplitude of lattice, R, as a function of a.
Thick lines indicate stable solutions.
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FIG. 2. Equal-height contours of the surface when
the lattice is formed. A and B indicate the location of
the bottom and the peak, respectively. The contours
equally divide the height. 6,=6,=05=0.
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dians.

The dimple lattice allows the lattice waves to
propagate through it. Let us introduce space-
time—-dependent phases and discuss the perturba-
tion

F,=R_exp[-i0,(,t)|~R_[1-40,F,t)]. (10)

Substituting this expression into (4) and assuming
0,~exp(k-T ~iQt) and 6. ;=~-0,, we obtain

L6, =L,0,=L,0,=38R.(6,~6,—6,), (11)

where L, = (gk,) [~ Q +v,%(, - K)?]. The condition
to obtain the nontrivial solution of (11) yields the
dispersion relation

L,L,L,+3BR_(L,L,+L,Ly+L,L,)=0. (12)

An interesting case occurs when 0,=6, +6,. The
dimple depth is kept constant when this restric-
tion is met. In order to have at least one nonzero
8;, say 6,, we need L, =0 and one of L, and L,
must be zero; I chose L;=0 and L,# 0 without
losing generality. We then find from (11) that 6,
=0, 6,=—6,, and (¢, +k,)-K =0, so that K %, or
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E&z. The relation between the phases, 6,=0

and 6, +6, =0, indicates that the dimple displace-
ment is perpendicular to 1%2. Therefore, the wave
propagating along 7@2 is the shear wave and the
one propagating perpendicular to %2, is the com-
pressional wave. From L, =0, the dispersion
relations for the shear and the compressional
waves are found to be

Q2 =§vgzl§|2 and Qz=%v32|_12|2. (13)

The symmetry of the lattice constrains the
shear waves to propagate in the six directions
{+ 121, + /%2, 11%3} and the compressional waves to
propagate along {+ (¢, +%,), + (b, +%,), + (ks =)} .
The observation of these lattice waves is very
easy because the frequency is typically a few
hertz.

Although only the liquid-vapor system has been
analyzed, our theory applies to the *He-*He sys-
tem if p, +p, and g(p, —p,)/ (o, +p;) are substituted
for p and g. In the liquid-vapor system, the ex-
periments have to be done below the X point;
otherwise the boiling of the liquid® disturbs the
surface.’

The author appreciates numerical work done by
B. C. Chambers and discussions with D. S. Fish-
er, C. C. Grimes, A. Hasegawa, P. M. Platzman,
and C. M. Varma.
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