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using the experimental value of T =100 meV.?
Both sets of experimental data fall below the
semiclassical curve at high values of 8, and it is
apparent that the energy shifts measured for se-
lenium decrease faster with increasing 6 than do
the semiclassical predictions.

An interesting question arises concerning the
effect of extra-atomic relaxation on PCI in solids.
Normally, extra-atomic relaxation, associated
with the adjustment of neighboring atoms to the
new potential produced by the doubly ionized atom
resulting from photoionization followed by Auger
decay, contributes to the energy of the emitted
Auger electron.'® However, when the photoelec-
tron remains in the near vicinity during the emis-
sion of the Auger electron, the extra-atomic re-
laxation contribution to the Auger electron energy
may be expected to decrease. The difference be-
tween the extra-atomic relaxation energies for a
singly ionized and a doubly ionized selenium atom
is estimated to be of the order of 3 eV.* Thus,
it is likely that extra-atomic relaxation will have
a nonnegligible effect on the observed Auger-
peak shifts in the near-threshold photoionization
of these solid compounds.
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I derive reduced equations of motion for molecular multiphoton processes by constructing
a set of relevant operators and adopting the Mori projection-operator technique. The intra-
molecular dephasing processes which play a dominant role in the quasicontinuum are proper-
ly incorporated by utilizing the representation of exact molecular states. The resulting equa-
tions include dephasing operators expressed in terms of intramolecular dipole correlation
functions, and interpolate between the coherent and incoherent driving limits.

Studies of molecular multiphoton processes
(MMP) induced by the interaction of infrared la-
sers with polyatomic molecules under collision-
less conditions are providing a revolutionary
new method for studying the dynamics of highly
excited molecules and chemical reactions and
achieving laser-controlled chemistry.!™® It is
clear*"® that after the absorption of a few in-
frared quanta, the molecule is pumped into the
quasicontinuum where the high density of molec-
ular states changes the nature of the molecular
driving from coherent to totally incoherent. De-
spite numerous experimental and theoretical ef-

forts, the appropriate description of the absorp-
tion process and the nature of the quasicontinuum
dynamics are not yet understood.

I present here a microscopic derivation of re-
duced equations of motion (REM) for MMP, start-
ing with the complete Liouville equation. The
approach is “hydrodynamiclike” and is based on
the choice of a few relevant molecular operators
corresponding to level populations and coherences
and then making use of Mori’s projection-opera-
tor technique®® utilizing a new partial-time-or-
dering version.'°*!!

Consider a polyatomic molecule irradiated with
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a monochromatic infrared laser whose frequency
is w;. We partition the molecular states relevant
for the multiphoton excitation into groups (levels)
where the nth level contains molecular states with
energy around nw;. Within the rotating-wave ap-
proximation (RWA) we need consider only the
following groups of states: |0a,v), |18,v-1),
«..,|ny,v =n). Here |ny,v -n) denotes a molecu-
lar state |ny) (eigenstate of the true molecular
Hamiltonian) dressed'? (to zeroth order) by the
radiation field with v —n photons. #» denotes the
level, whereas y runs over the states within the
nth level. For brevity |ny,v —n) will be denoted
by |ny). The total Hamiltonian within the RWA is

H=2nE,(nal+e 25 |na)u "™ mpl
no n.r(r;=gil

=H +H'. (1)

Here E,, is the energy of the dressed |na) molec-
ular state, i.e., E,,=E, -nw,, | is the dipole
operator, uaB"’”E(nalulmB), and € is the laser
field amplitude. The Hamiltonian (1) represents
a set of coupled quasicontinua of dressed molec-
ular states.

For an N-level molecular system we shall now
define the following M= 3N - 2 relevant molecular
operators

Apy=(d,) V2 Ina)(nal ,

n=0,1,...,N-1, (2a)
A= (rnm)"o%uas"”‘lnax mp|,
m=ntl, (2b)
where
Vom®= 2| e |? (2c)

and d, is the number of states in the nth level.
The operators A,, were chosen since they repre-

|

sent the primary quantities of interest (the popu-
lations of the various levels), whereas A, are
related to their time derivatives ([H,4,,]). Our
operators (2) are orthonormal, i.e.,

(Apmy At y=trA, A, V=0, .6, .. (3)

nm?

We now define the following Mori projection

operator, P,'° with

PB=}(B,A VA, ..

nym

Since initially the molecular density matrix com-
mutes with P, we shall be interested only in the
projection Pp(t)P, which may be expanded as

Pp(t)P =250, (1) A 1, (4)

nym

where 0,,,(f) are ¢ numbers.

We definition of an M -dimensional vector, 4,
whose components are A,,, and a corresponding
vector, g, with components o,,, the exact time
evolution of g is then given by'°

dg(t)/dt
=-i(Le" ™4, ATNe 14,40 (1),  (5)

where each bracket is an M X M matrix. L is the
Liouville operator corresponding to H, i.e.,
L=[H, ]. We further define

‘Pn'_'dnl/2 Oan s (63.)
Wag = (Encc _Emﬂ) - a—)nm’ (6b)
Wy =7nm-2zil “dﬁnm|2(Enot _Em6)9 (60)
e
and
Qnm =€'ynm' (Gd)

P, is the population of the nth level and @, is the
integrated Rabi frequency for the n-m transition.
Expanding the operator to the right-hand side of
Eq. (5), we get the following REM:

dPn/dt == iQn,n+1(cn+ 1~ Tnnt 1) -1 Qn.n‘"l(on-l,n - 0n.n-'l), (7a)

do,,/dt =[-i®,,,+G,, ()]0, = i F(tP,/d ~p,/d,), m=ntl, (o)
where

G,m(t)=dnI,,(t)/dt=1I,,""dl,(t)/dt, (8)

an( t) =Inm( t) exp(- la’nm t) +[l Z)nm - Gnm( t)] f: ar Inm(T) exp(— i aan) (9)
or, alternatively,

¢ ,_ (a . r1d . ot _
F, . (t)=- fo dr I,,(t)exp(-iw,,T) V@ lnligt- In fod‘r I (T)exp(-iw,,7)|. (92)
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Equations (7a) are exact. Equations (7b) are
more complicated since not all possible opera-
tors of the form [H, A,,] are included in our basis
set (2). This “reduction” results in the appear-
ance of the depasing terms F and G. Equations
(7o) were evaluated to first order in Q.

G and F are relaxation operators expressed in
terms of the intramolecular dipole corrvelation
functions I,,(t) which are the key quantities in
the present formulation and contain all the rele-
vant molecular information,

Inm(t) = ynm-ZZ‘;l uaﬂan eXp(—' { Waus t)
o

=Ypm X My (£ pn(0)) . (10)

By definition I,,,(0)=1 and physically we expect
I,,(0)=0. We also note that F(0)=1.

The REM (7) exhibit the following features:

(1) Because of the adoption of a basis set of
true molecular states, all the anharmonicities
are properly (nonperturbatively) incorporated
in this REM. As a result, no relaxation of popu-
lation (T,-type) terms need to be considered.

(2) Equations (7)-(10) provide us for the first
time with exact microscopic expressions for
intramolecular dephasing rates. The dephasing
terms in our REM are G,,(t) and F,,(¢) and they
are independent of the dipole strength u but rath-
er depend merely on the functional form of the
dipole operator. If we set =0, we can solve
for o,,(1):

(1) = €XP(= i @, )1 1 ( £)0,, (0). (11)

I, is thus the intramolecular dipole correlation
function for the n-m transition. If we adiabatical-
ly switch a weak radiation field, Eq. (7) will pre-
dict a line shape which is the Fourier transform
of I,,(t). At the early stages of the molecular
multiphoton excitation (“region I’)*"® each level
contains only one state (no reduction). In this
case we have I,,(t)=F,,(t)=1, G,,(t)=0, there
is no dephasing, and we recover the ordinary
limit of coherent driving.

(3) Within the present formulation, the dephas-
ing arises entirely as a result of our reduced
description of the molecular dynamics®® (i.e.,
choice of a few variables). This is to be con-
trasted with ordinary line-shape formulations'*
where the dephasing is treated perturbatively in
some intramolecular interaction. The conven-
tional perturbative expressions for line broad-
ening® may be obtained from our general ex-
pressions(8) and (9) by assuming a zeroth-order
separation of degrees of freedom into a “system”
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and a “bath” whereby (™ =U,,04,8- We then
introduce an intramolecular coupling V and eval-
uate G and F' to lowest order in V, resulting in
F,.(t)=1 and

ImG,, (1) - Im fothEB V™ = Vg™ 2
ol
X exp(— £ wy 7).

Neither the separation into a system and a bath
nor the perturbative treatment of V is expected
to hold for MMP.

(4) A reasonable form for I,,,(¢) may be* I, (t)
=exp{- (I'/a)[ exp(- at) - 1 +at]}. This is the well-
known correlation function from the theory of
Brownian motion. With use of this correlation
function, the dephasing term (8) assumes the
form G,,(t)=-T[1 - exp(-at)] and when a >Q
(Markovian limit), we may replace G (¢) in our
REM by G(~)=-T and we recover the phenomen-
ological dephasing term.,!*

(5) There is a continuous transition to inco-
herent driving. Assuming a >»T', we get I.,.(¢)
=exp(—I't), which gives F(#)=1. Assuming furth-
er that I' > @ (fast dephasing), we can invoke a
steady-state assumption for the coherences, and
our REM assumes the form of simple rate equa-
tions corresponding to incoherent driving:

. 2roQ 2 (P P
P= 2 m“’:jﬂ;(—ci-m—gﬂ) (12)

m=ntl m n

The steady-state assumption for the coherences
may be invoked under less restrictive assump-
tions than done here (i.e., assuming a > Q and
leaving the time dependence in F). In this case
we get rate equations for the populations with
time-dependent rates.

(6) The present formulation enables us to con-
struct a closed set of REM for any chosen set of
molecular operators. However, the complexity
(and usefulness) of the REM are directly related
to the choice of the right number of variables.

Equations (7) could be improved (if necessary)
by two ways. We may either hold the number of
operators (2) fixed, and add more terms (higher
order in ) to the evolution operator or, alterna
tively, add more dynamical operators and leave
the evolution operator to low order in ©. Either
approach is sufficient in principle. The system-
atic way to increase the number of operators is
to add more derivatives (i.e., operators of the
form [H, A,,], [H,[H, A,,l]l, ete.). As an exam-
ple, we may consider the operators correspond-
ing to multiple-quantum coherence A, (for m —n
>1), obtained by replacing the matrix g = (1), s
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in (2b) and (2c) by y where v, ,, =l v 1bpi iz
**°lUn-1n The dephasing term of 1,,(¢) [G,,(?)]
will be given again by (8) where in Eq. (10) we
simply replace pby p. In addition, we shall have
complicated dri:ring terms connecting o,, with
Opi1m and 0, ., which may be expressed in terms
of higher-order three-time intramolecular dipole
correlation functions.’® By adoption of this choice,
the number of variables is N2, It should be noted,
however, that unlike conventional derivations of
master equations,’ the number N? does not have
any special role within the present formulation.
The former are based on partitioning the degrees
of freedom into a “system” and a “bath” with a
weak interaction. NZ is then the size of a com-
plete set of system operators. Since for MMP
we do not have such a natural partitioning, the
optimal size of the reduced description is dic-
tated merely by the simplicity of the resulting
REM, and we may adopt a convenient set of REM
with significantly smaller number of variables.
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