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For a "slowly" time-dependent Hamiltonian system exhibiting ergodic motion, the vol-
ume inside the hypersurface on which the Hamiltonian equals a constant is an adiabatic
invariant. It is shown that the error in the constant is diffusive and scales as (wc/T)
where 7 is a certain correlation time of the ergodic motion, and ~ is the time scale
over which the Hamiltonian changes.

The importance of ergodically wandering solu-
tions of Hamilton's equations has been demon-
strated in a variety of plasma-physics prob-
lems, ' ' Recently, Lovelace' has considered the
compression of a field-reversed ion ring. After
assuming that the motion of the ring ions should
be ergodic in a plane transverse to the toroidal
direction, he demonstrated an adiabatic invariant
for the ergodically moving ion. Although his
derivation was specific to the ion-ring problem,
the invariant is actually a very general one.
Namely, for a "slowly" time-dependent Hamil-
tonian system exhibiting ergodic motion in N spa-
tial dimensions (q), the volume of 2N-dimension-
al phase space (q, p) within the hypersurface H(p,
q, t) = const (where H is the Hamiltonian) is an
adiabatic invariant. (Indeed the existence of this
adiabatic invariant is already appreciated in sta-
tistical mechanics, and the invariant may be as-
sociated with the system entropy. In statistical
mechanics N is large, whereas N =2 is of inter-
est for Befs. l and 2.) The generality of the er-
godic invariant suggests that it may be useful in
a wide variety of other plasma-physics problems
where ergodic particle motion is prevalent. Moti-
vated by this, the present work attempts to evalu-
ate the goodness of the ergodic adiabatic invariant.
That is, since the adiabatic invariant is only ap-
proximately conserved, how good is the approxi-
mation~ For the case of the familiar N= 1. adiabat-
ic invariant (gp dq) of a particle exhibiting rapid
almost periodic motion (e.g. , the magnetic mo-
ment), the average error in assuming that fp dq

is conserved can be exponentially small in T,
where T is the time scale over which the Hamil-
tonian changes. ' In contrast, it is shown here
that, for the ergodic invariant, the error is ty-
pically proportional to T "', and it is shown how

to calculate the error.
In order to present a brief heuristic demonstra-

tion of the ergodic adiabatic invariant, suppose
that the existence of three widely separated time
scales, T»T»T, where 7„ is the time it takes
the system to wander over the surface II =const,
where II is the Hamiltonian, and in computing 7

one uses the orbit obtained from Hamilton's equa-
tions with the explicit slow time dependence of II
neglected (since 7 is large) The e.xact distribu-
tion function of the system is f =5(p- p(t)) 5( q
—q(t)), where p(t) and q(t) are solutions of the
exact equations of motion. According to the er-
godic theorem,

where ( ~ ~ )r denotes an average over the time
scale T. Note that K and H, evolve on the s3.ow

time scale T (as does H). (For BH/Bt =0 the Ham-
iltonian is a constant of the motion and H, is just
a constant, but aH/at v 0 is of interest here. )
The principal use of the ergodic invariant is that
it will determine the time dependence of H, . If
a surface in (p, q) phase space is evolved (with
each point on the surface following a system or-
bit), then the volume inside that surface is con-
served. ' Since (I) represents a distribution func-
tion, the surface II =II, evolves in this manner.
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From (4) it is clear that at any subsequent time,
E will retain its initial character, viz, , it is a 5
function on a surface in (p, q) space. Further-
more, it follows from the adiabatic invariant (to
be demonstrated more formally below) that the
singular surface of the exact E will be close to
the surface H =H„with H, (t) determined from the
constancy of J' [cf. Eq. (2)]. No attempt will be
made to obtain the details of how the singular sur-
face of the exact F deviates from H =H, (t). Bath-
er, an average of this deviation will be found. To
do this, multiply (4) by (H -H, )' and integrate
over phase space, with the result

((~H)—')=2fF —— ' (H-H, )d pd"q, (6)
d 2 ~H dHp

where ((&K)')=- [f(H —H, )'Fd"p d"q]. The problem
then reduces to obtaining a sufficiently accurate
approximation for E to insert into the right-hand
side of (5). To do this, a multiple-time-scale
analysis' will be used.

The following expansion is now introduced:

H(p, q, t) =h(p, q, v,),
F =F,(p, q, ~,)+~F,(p, q, ~„~,)+O(~'),
v., =t, T, =et,

(6a)

(6b)

(6c)

where the small parameter ~ is introduced to em-
phasize that H evolves slowly, in some sense.

Thus we obtain the desired result:

AH, (t), t) = fU(H, (t) -H(p, q, t))d"pd"q (2)

is approximately invariant [(1) is approximate],
where U( ~ ~ ~ ) is the unit step function. [Note
that, for M =1, Eq. (2) reduces to fpdq. ] Thus,
if the Hamiltonian at time t =0 has a value H, (0),
its value at any subsequent time, H, (t), may be
approximately determined from AH, (t), t)
=A H, (0),0).

The problem will now be considered in a more
formal way and the error in the adiabatic approx-
imation obtained. To do this consider an ensem-
ble of initial conditions uniform on the hypersur-
face H(p, q, 0) =H, (0), so that there exists an ini-
tial distribution function

F(p, q, 0) =K(0)&(H(p, q, 0) -H, (0)), (3)

where, for convenience, we take fF$, q, 0)d"pd"q
= 1. One then asks how this initial distribution
function evolves with time: F(p, q, t). This evolu-
tion is obtained from the Vlasov equation,

Inserting (6) in (4) and expanding to orders e' and
&', one obtains the following two equations:

Bh BEp Bh 8Ep~ ~ ~ ~~+ ~ 0~
ep q Bq ~p

Ex ~Q ~+i 8~ ~+i 8$ p+~ -~ ~

87 Bp Bq Bq Bp 87

The solution to (7) subject to (3) is

F, =k(~,)6(h(p, q, ~,) -h, (~,))

(7)

(8)

g(h, )„ fk(~, )6(h —h, )d"p d"q

+ g ' k(7.,) fU(h -h, )d"pd"q =0.

Since g is arbitrary, it follows that

(d/dr, )fk(v, )5(h -h, )d"pd q =0,

(d/d7 )fU(h —h )d pd q =0.
(10a)

(lob)

The first condition expresses the conservation of
the number of particles, while the second condi-
tion is the adiabatic invariant. Equations (10a)
and (10b) and the initial values k and h, are suf-
ficient to determine k(v, ) and h, (r,). Insertion of
I"„thus obtained, makes the right-hand side of
Eq. (5) identically zero. Thus to calculate ((~)')
it is necessary to obtain +y %'1th Fp specified,
one can now solve Eq. (8) for F, by integrating
over the system orbit (on the time scale ~,), so
that

where the P, Q trajectories in 7, ' are determined

with k (0) =K(0), h, (0) =H, (0), but with k (v,) and
h(7', ) so far otherwise arbitrary. To determine
k(~,) and h(7, ) one needs to use Eq. (8). In the
spirit of the multiple-time-scale method, k(7,)
and h(r, ) must be chosen so that F, obtained from
(8) does not grow secularly on the time scale v, .
This is necessary in order that the expansion
(Gb) remain valid for long times 7, -0(1). Mul-
tiplying (8) by g(h), an arbitrary function of h,
and integrating over phase space, one obtains

(a/8~, )fg(h)F, d"p d"q

= —fg(h)(aF, /sT, )d~pd"q.

Clearly, in order to avoid secular behavior of
f g(h)F, d"p d"q, one must have

fg(h)(», /~v, )d"pd"q = 0

Using (9) in this condition on F, one obtains
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(12a)

(12b)

(12c)
i

by integrating Hamilton's equations backward in
time from vy Ty,

p=P(~, ), q=Q(~, ),

dP/d7, =ah(P, Q, 7.,)/8Q,

dQ/d7', ' = —&h(P, Q, 7',)/9P.

[Note that in Eqs. (12), 7, ' and 7, are both inde-
pendent variables. Thus (12) is effectively a prob
lem with a time-independent Hamiltonian. ] Now
inserting (9) and (11) in (5), reverting to the t
variable, interchanging the order of the t and (p,
q) integrations, and making use of the 6-function
identity, x5'(r) =- 5(r), one obtains

BH(p, q, t) dH, BH(P(t'), Q(t'), t) dH, (13)

Equation (13) can be concisely expressed by introducing the following autocorrelation function

C(s, t) = d pd"qF — ' 0,(t)
88 gH~ ~HO dHO (14)

where H =H(p, tl, t), and O, (t) is an operator which
translates values of p and Q backward in time by
an amount s by following the trajectory of a time-
independent system whose Hamiltonian is H(p, (j, t)
with the explicit time dependence in H frozen
[i.e., as in Eqs. (12)]. Thus (13) becomes"

—((~H)') =
dt

C(s, t)ds, (15)

where C(s, t) = C(-s, t) has been used, and the in-
tegration limits have been set equal to infinity on
the basis that the correlation time is much short-
er than the slow time scale over which IIO chang-
esp lees p

7 = (d lnH, /dt) ')& [ f'" C(s, t)ds][C(0, t)]

(a basic assumption of the analysis is that 7, & 0).
Note that (15) is in the characteristic form for a
diffusion process.

Equation (15) gives the evolution of ((AH)a) in
terms of a correlation function involving the or-
bits for a time dePendent H-amiltonian system and

is my main result. In practice, application of
(15) may be nontrivial, since C(s, t) probably
must be evaluated numerically' for different val-
ues of t. Nevertheless, (15) can yield useful esti-
mates of ((hH)'). In particular, (15) gives the im-
portant results that, at t- v,

aH, ,
- (7, /~)"', (16)

where &H, , =[((H H,)')]"'. (No-te that b,H,
-0 for 7', /7'-0, thus verifying that 8 is indeed an
adiabatic invariant. ) This result, Eq. (16), is in
contrast with the analogous result for the more
familiar adiabatic invariant of a particle execut-
ing rapid, almost periodic motion in one spatial
dimension (e.g. , the magnetic moment). Namely,
for the one-dimensional adiabatic invariant the

average error can be exponentially small' in ~
[error-A exp(-B~), where A. and B are con-
stants].

To summarize, an equation [Eq. (15)] has been
obtained for the quantity ((&H)'), which measures
the goodness of the ergodic adiabatic invariant'
[Eq. (2)], where the equation involves a correla-
tion function [Eq. (14)] evaluated for the orbits
of a time indePende-nt Hamiltonian. This equa-
tion, Eq. (15), indicates that the spreading in H
is diffusive and scales as (~, /~)' ' [cf. Eq. (16)].

Thanks are due R. V. Lovelace and J. M. Finn
for discussion, and A. N. Kaufman and O. Man-
ley for pointing out the relevance of entropy.
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~A calculation similar to that given for ((AH) ) also
yields

which does not affect my estimate, Eq. (16), since z» vc [where (dH) = f(H-—Ho)Fd+pd"q]. This result is
similar to the relation between friction and diffusion co-
efficients in weak-turbulence plasma theory tfor exam-
ple, %'. M. Manheimer and T. H. Dupree, Phys. Fluids
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Correlation functions of particles in ergodic motion
have been calculated in several existing works. See,
for example, J. M. Finn (to be published), who investi-
gates the ergodicity of ions in an ion-ring equilibrium
and utilizes the calculated correlation functions in an
analysis of the ring stability.

~Another relevant reference, which has recently
come to our attention, analyzes the ergodic invariant
for a model of Surmac (surface magnetic confinement)
particle containment in which particles bounce freely
between confining walls which reflect the particles into
random directions [Y. C. Lee, T. K. Samec, and B. D.
Freid, Phys. Fluids 20, 815 (1977)j. Our analysis does
not apply to this model, and, indeed, Lee et a/. find a
diffusion which is smaller than 0(z ~ ).
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