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Alfven Resonance Effects on Magnetosonic Modes in Large Tokamaks

C. F. F. Karney, F. W. Perkins, and Y.-C. Sun
Plasma Physics Ra&oratory, Princeton University, Princeton, New Jersey 08544

E,'Received 14 August 1978)

The theory of Alfven resonance effects on the wave modes of a tokamak is extended be-
yond the incompressible magnetohydrodynamic model to include finite-(&/0;) effects and

compressibility. The discrete spectrum of compressional Alfven waves consists of a
sequence of frequencies with finite damping decrements resulting from the Alfven reso-
nance. The finite-frequency effects can cause the damping to almost vanish. This per-
mits Alfven resonance heating via high-Q eigenmodes in large tokamaks.

Tokamaks of the size of the Princeton Large
Torus tokamak (pl, T)' are the first to nominally
permit propagation of magnetosonic (i.e., com-
pressional Alfven) modes at frequencies that are
a modest fraction of the ion cyclotron frequency
(typically (u/Q, = 0.5). As such, forthcoming
wave propagation measurements on these toka-
maks will represent the first opportunity to study
experimentally the discrete spectrum of wave
modes in a tokamak below the ion cyclotron fre-
quency.

In this frequency range, magnetosonic waves
may be excited. The antenna determines the par-
allel and azimuthal components of the wave vec-
tor, while the third (i.e. , radial) component is
determined by the dispersion relation or, more
accurately, by the wave propagation equation.
Depending on the local value of the Alfven speed,
v A, this gives evanescent behavior (in the low-
density edge of the plasma) or propagating waves
where the density is sufficiently high. The tran-
sition between the two regions is complicated by
the presence of the shear Alfven resonance. In
cold-plasma theory a singularity (k„-~) appears
at the point where cu = k ~~v A. (Recall that both &u

and kI~ are determined by the antenna. ) This
changes the magnetosonic cutoff into a cutoff-res-
onance-cutoff triplet. The resonance can lead to
energy absorption. The goal of this work is to
evaluate how much absorption the shear Alfven
resonance causes. We accomplish this by calcu-
lating the reflection coefficient for magnetosonic
waves incident on the cutoff-resonance-cutoff
triplet.

Previous analyses of the problem' ' treated the
magnetohydrodynamic (MHD) limit in which ur/Q;

0, and, by and large, employed incompressible
models. The recent work of Ott, Wersinger, and
Bonoli' does recognize that the shear Alfven reso-
nance can damp magnetosonic modes but does not
include finite-frequency effects, and specializes
its results to the m=0 (k =0) case. Discussions

of the MHD spectra' ' of a diffuse linear pinch do
not treat quantitatively the discrete spectrum.
Finite-frequency effects have been considered by
Conn and Tataronis, ' via a Hall term in Ohm's
law, but their incompressible model ignores
coupling to magnetosonic waves.

Since the dissipation depends on the fields close
to the region of the cutoffs and resonance, which
typically occupy only a small fraction of the mi-
nor radius, we may accurately treat the problem
by a slab-geometry model in which x is parallel
to the density gradient and ~ is parallel to the
constant magnetic field Bp A linear variation of
density with x is employed. The neglect of the
shear of the magnetic field is justifiable as long
asn»m/q (n andm are the toroidal and poloidal
mode numbers and q is the safety factor). The
electrons and ions are treated as separate cold
fluids. All field quantities vary as f(x) exp(ik, y
+ik, z i~t). T-he parallel electrical field is
neglected (it is shorted out by the high parallel
electron conductivity). The remaining compo-
nents of the electric field are described by

(A k, ')F„+i(D——k, d/dx)E, = 0,
—i(D +k, d/dx)E„+(A+d /dx )E, =0, (2)

d kD
(A

—D) (5)

The right-hand side of Eq. (5) is the cutoff-reso-
nance- cutoff triplet.

The nature of the wave propagation can be seen

whereA =(&u'/vA')[Q, '/(Q, ' —u&')] —k, ', D =(A
+k, ')&u/Q„and v A =cQ, /Q~, . Making the substi-
tutions E =E„and

g =(A -k, ') '(Ad/dx -k„D)E, ,

we may recast (1) and (2) as a coupled set of first-
order diff erential equations,

d k D A-k, '
dx A. A
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in the WKB limit by letting d/dx become tk„ in
Eqs. (4) and (5). This yields the dispersion rela-
tion

k„2 = —k~ +(A -D)(A. +D)/A .

Figure 1 graphs this dispersion relation as a
function of density and clearly shows the cutoff-
resonance-cutoff phenomenon discussed previous-
ly. Propagation region I, which vanishes as &u/

0& -0, corresponds to the electromagnetic ion-
cyclotron wave discussed by Stix' and used in ion-
cyclotron heating experiments on the C stellara-
tor. ' The resonance at A =0 is called either the
shear Alfven resonance or the perpendicular ion-
cyclotron resonance. ' Region II of Fig. 1 indi-
cates where the compressional magnetosonic
mode propagates.

We put Eqs. (4) and (5) into dimensionless form
by defining a scale length l = [A'(x,)] 'I' and a
new coordinate g =(x -x,)/l, where A' =dA/dx and

x, is the point at which A = 0 (the finite-frequency
generalization of the shear Alfven resonance).
For small $ we retain only the leading-order
terms in the series expansions, for A and D.
Thus, A = $/1' and D = S/l', where S =k, '1'(&u/0, ).

N

~x0

Equations (4) and (5) then become

d MS $-M

d MS@ $ -S
(8)

where M=k„l and @=lg. The equation for E
reads

FIG. l. Representative plot of the normalized wave
number k„/k, vs density from the dispersion re1stion
(6). Here u& =&;/3 and k, =k,/2. The reference densi-
ty, n 0, is determined by A =0.

d2 M d ( -S 2 MS«*' ~g-~*) «" ~ '~g-~*))' '
We note the following points about Eq. (9). The

equation is singular at $ =0, the shear Alfven
resonance. The point $ =M' is only an apparent
singularity" as may be seen from Eqs. (7) and
(8). The physical significance of the apparent
singularity is simply a statement of wave polar-
ization: gdE/d$ =MSE at $ =M'. In the limit

~ $~- ~ the equation becomes the Airy equation, d'E/
dg'+($ -M')E =0, which physically describes a
propagating magnetosonic wave for $ &M' and an
evanescent mode for $ &M'.

To determine the reflection coefficient, we
solve Eq. (9) with the boundary condition that as
5 - - ~, E ~ Ai(M' - $), the evanescent Airy func-
tion. We ignore the small portion of the Bi func-
tion which should be added since the boundary of
the plasma where E =0 is at the finite distance $
=-x,/l. By integrating Eq. (9) through the Alfven
resonance layer, we find what combination of the
Ai and Bi functions we have at $ - ~. (Treating
the frequency as a Laplace transform variable,

we find that causality requires us to go above the
singularity at $ =0 in the complex plane. ) We de-
compose the Ai and Bi functions into a wave inci-
dent on the layer $ =M' and a reflected wave. We
define an amplitude reflection coefficient, R, and
from it the fraction, q', of incident power dissipat-
ed upon reflection q =1- ( 8 ~'.

In cases of interest, S andM are small. An

analytical estimate of q is then possible. We ob-
tain this by finding series solutions to Eq. (9)
about the singular point and by matching these
onto the Airy functions at large $. In the neigh-
borhood of the singularities, the solutions are
(to lowest orders in M and S)

E, =1+[(S/M) +S'] $ +O(S', $', S'$'),

E, =1+MS(l -MS)E, In(+O(S', $', S'('). (ll)
[We assume M=O(S).] The appropriate combina-
tion of E, and E, that matches onto Ai(- $) in the
region M'« —

&
- g, «1 is

E = [c, —(M/S) c2]E2 + [(M/S) c2 + ln(- $0)(M2c2 -MSc,) ]E» (12)
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where c, = Ai{0)=0.355 and c, = —Ai'{0) =0.259. We write ln(- ]c) = lnl (el +is', and then ignore the lnl &cl

term since it is smaller than the other real terms. For M'«$ «1 we then have

E = Ai(- () + i(s/2v 3)[M(c,/c, )
"'—S(c,/c, ) '~'] 'Bi(- $),

from which we determine the fractional power
absorbed,

q =(2~/V3)[M( c/c, )'~' —S(c,/c )'12]2. (14)

The MHD limit is given by S-O. We see that the
effect of the finite frequency is either to increase
or to decrease q depending on the sign of M. If
S =Mc,/c» we have q =0.

In particular, if S=M=O, we have q=0 and,
hence, there is no energy absorption. Indeed in
this limit Eq. (9) reduces to the Airy equation.
In the same limit, i.e., ~/0, - 0 and k,- 0, the
equation obtained assuming an incompressible
equation of state" is singular and predicts ab-
sorption. In low-P plasmas such as tokamaks,
our model is the more appropriate because there
is no force linear in the wave amplitude which
will produce a plasma acceleration parallel to
the equilibrium magnetic field. (Such a force is
assumed in incompressible models. )

In Fig. 2 we compare Eq. (14) with the value of
q obtained by numerically integrating Eqs. (() and
(8). We see that there is good agreement for l Sl,
l M l

& 0.5. In particular the line along which q =0
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! is accurately given by Eq. (14).
In a cyclindrical version of (4) and (5), which

is an appropriate model for a tokamak, we must
impose a regularity boundary condition on the
cylindrical axis in addition to the condition that
E =0 at the surface. The equations then become
a complex-eigenvalue problem and integration
along an appropriate complex contour generates
a discrete set of oscillating, damped eigenmodes.
Numerical integrations find the expected eigen-
values which have a minimum in the damping
decrement where q is small. Figure 3 gives typi-
cal results.
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FIG. 2. Contours of constant +q. (s) Results ob-
tained by numerically integrating (7) and (8). (b) Ana-
lytic result (14).

FIG. 3. Representative points of the discrete spec-
trum of a diffuse cylindrical plasma column. The fre-
quency and the damping decrement are plotted for a
discrete set of parallel wave numbers &II

= n/A. Lines
serve simply to identify the m number. Computations
assumed a parabolic density profile with (dpi' p 0 /c
=3 &&10 and A/a =3 characteristic of the PLT at a cen-
tral density of 10' protons/cm'.
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To illustrate our result let us compute q for the PLT taking k, = —m/a, k, = n/8, a =40 cm, g = 1.3m,
and assuming a parabolic density profile. We find

&4 .5 &i4 - R &~ &.ai&40'

where 8« is the toroidal field in units of 40 kG, f»
is the frequency of the wave generator in units of
25 MHz, n„ is the central density in units of 10"
cm, anda« the minor radius in units of 40 cm.
Thus, if m= —1, q is small for n =+ 10. With this
value of n the wave energy propagates away from
the antenna reasonably tluickly (since k~-k, ) so
that the parallel damping length is long. We ex-
pect, therefore, that a high-Q eigenmode will be
excited. Practically, this allows us to combine
the high antenna loading associated with toroidal
eigenmodes" with the Alfven wave dissipation
process.

The physics of the dissipation mechanism has
been discussed previously. Finite-temperature
and parallel-electric-field effects" change Eqs.
(1) and (2) into a higher-order system without
singularities. The dissipated energy is linearly
mode converted" into a "kinetic-Alfven" wave,
which damps rapidly via linear electron Landau
damping. Hence, the energy absorbed by the
shear Alfven resonance shows up as electron
heating near the resonance.
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