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Stark broadening may prevent resolution of neon
satellite lines. This problem can be overcome
by using seed ions with higher atomic number Z.
The Stark width" of the I. line is proportional
to Z ", whereas the separation between the
satellite lines" is proportional to Z ".
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We report the solution of the problem of saturation and ac Stark splitting of a resonant
transition in a strong chaotic field of arbitrary bandwidth. We present results for double
optical resonance and resonance fluorescence and compare them to those obtained for a
phase-diffusion field.

The role of field fluctuations and of the asso-
ciated bandwidth in the resonant interaction of in-
tense radiation with matter has been an extreme-
ly active subject in the last three years or so.
A number of interesting results' ' have been ob-
tained under the assumption of a bandwidth due
entirely to the fluctuations of the phase (phase
diffusion) of the field, whose amplitude is as-
sumed to be constant. The phase-diffusion model
is, of course, adequate for the interpretation of
experiments with well-stabilized cw lasers, no-
tably those used in recent experiments on reso-
nance fluorescence' "under intense fields.
There is, however, another class of experiments—such as multiphoton experiments, "'"for ex-
ample perf ormed with considerably stronger,
multimode, pulsed lasers whose amplitude under-

goes substantial fluctuations, often comparable
to, if not stronger than, those of a chaotic field.
We have therefore a more general and far more
significant problem: How does an intense, sto-
chastically fluctuating fiel& zith both amplitude
and phase fluctuations- —affect the saturation and
the associated Stark splitting of a resonant transi-
tionP It also is a far more difficult problem that
had thus far eluded solution, although some of its
aspects have been investigated. "" In this I.et-
ter, we report the solution of the problem for a
chaotic field and present results on saturation,
resonance fluorescence, and double optical reso-
nance.

The essential mathematical problem, which can
be formulated in more than one way, basically re-
quires the solution of the equations of motion of
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a two-level system (TLS) strongly coupled to a
stochastically fluctuating field. Thus one has to
solve a set of stochastic differential equations.
For phase diffusion, the task is facilitated signifi-
cantly because the atomic variables can at the ap-
propriate stage of the calculation be decorrelated
rigorously from the field variables. The decor-
relation refers to the stochastic averaging over
the fluctuating variables. As a result, the sto-
chastic differential equations are reduced to dif-
ferential equations obeyed by averaged atomic
variables. But for amplitude fluctuations, the de-
correlation is not valid and if it is used as an ap-
proximation one does not know the magnitude of
the error, unless of course the solution of the
complete problem is known. It is only in the
weak-field limit that the decorrelation is valid
for all fields.

We present here results from the solution of

the problem for a chaotic field which, as is well
known, undergoes Gaussian amplitude fluctua-
tions. These results have been obtained with two

parallel approaches. "" In one of the approach-
es,"the chaotic field is assumed to be Markovian
and is represented by its Fokker-Planck equa-
tion. As has been shown elsewhere, "if one is in-
terested in certain one-time atom-field averages,
the stochastic density-matrix equations can be
reduced to an infinite set of differential equations
for these averages. If, in addition, one considers
the stationary limit of the averaged density ma-
trix of the TLS, the equations reduce to an infi-
nite system of linear algebraic equations which

can be used to obtain solutions in terms of con-
tinued fractions. Let p„(t)and p»(t) be diagonal
matrix elements (populations) of the density ma-
trix of the TLS, where

~ 2) and
~ 1) are the upper

and lower states, respectively, with energies
I~, and l~, . These matrix elements are, of
course, coupled to p»(t). The stationary limit of

the average (indicated by angular brackets) popu-
lation difference (n(t)) = (p»(t)) —(p»(t)) corre-
sponds to t - ~ and can be written as a continued
fraction involving the averaged Habi frequency 0,
the detuning 4 from resonance, the field band-
width b, and the spontaneous decay width ~, of the
upper state. This continued fraction has been
shown" to converge for all values of the above pa-
rameters. In general, it must be calculated nu-

merically but the convergence is very rapid which
enables one to obtain results for arbitrary field
intensities and bandwidths.

In the second approach, "the chaotic field e(t)
is written as a complex Gaussian stochastic proc-
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ess described by the infinite sequence of its field-
correlation functions. Although such a process is
not necessarily Markovian, we do here assume a
Markovian chaotic field with first-order correla-
tion function (&*(t,)h(t, )) =h, ' exp(- b

~ t, —t, I),
where h, '= ( ~h(t) ~'), and the resulting spectrum
is obviously Lorentzian. The correlation func-
tions of the chaotic field obey well-known rela-
tions. ' Again using the density-matrix equations,
an integral equation for n(t) can be obtained. But
in attempting to calculate (n(t)) one encounters
correlations of the form (8*(t,)8(t,)n(t, )) in which
the field and atom variables can be decorrelated
only for a phase-diffusion field. To solve the
problem for the chaotic field, we have used the
correlation functions of the field to obtain a se-
ies expansion for (8*(t,)8(t,)n(t, )). When this is
substituted into the integral equation for (n(t)),
then after an iteration procedure whose details
will be presented elsewhere, "we were able to
obtain a series integral equation which can be
written in a diagrammatic form. Taking the La-
place transform, one can then express (n(t =~))
in terms of a continued fraction equivalent to the
one of the first approach.

Before presenting some of the results obtained
with the above approaches, it is worth discussing
an analytical result that illustrates much of the
physics involved. For a chaotic field of zero
bandwidth (physically corresponding to a band-
width much smaller than the natural width of the
atomic transition), the continued fraction simpli-
fies considerably and (n(~)) can be written as

(n (~)) = (n (~)) (1 + 1/S)e ~~ ~E,(1/S)

where S—= 2A'/(a'+4m, ') is the usual saturation
parameter of the TLS in a monochromatic field:
0 =2K 'p|2$, is the average Rabi frequency, and
E ] is the exponential integral . Here CH indicates
chaotic and PD phase diffusion. Note that (n(~))
= —(1+S) '. From the properties of the exponen-
tial integral one finds that (n(~)) and (n(~))
are equal, to first order in S (weak field); for
large S, (n(~)) = —lnS/S while (n(~)) = —1/S.
As expected, in both cases (n(~)) tends to zero
as S- ~, but it approaches zero more slowly for
a chaotic than for a coherent field. This means
that the chaotic field is less effective than the co-
herent field in saturating a one-photon transition.
As we will see below, this turns out to be a basic
feature of the chaotic field that persists for arbi-
trary bandwidth.

Let us now consider some of the results illus-
trating the effects of field fluctuations for chaotic
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fields of arbitrary bandwidth. In Fig. 1 we plot
the ratio R =(p»(~)) "/(p»(~)) as a function of
field intensity for various field bandwidths b. As
we progress from curve 1 (corresponding to b =0)
to curve 6 (corresponding to b = 5a', ) the band-
width increases. For zero field, the ratio R is
unity, but as the field increases, the ratio drops
to a minimum value which depends on the band-
width. Also the field strength at which the mini-
mum occurs depends on the bandwidth. Curve 1
represents the analytical results of Eg. (1). The
other curves have resulted from the numerical
calculation of the continued fraction. Curve 2,
for example, shows that for a bandwidth 5 =0.2K,
the minimum occurs at a field strength for which
A K2. Clearly, the results illustrated by these
curves prove an assertion made earlier: The
chaotic field is always less effective than a phase-
diffusion field in saturating a resonant transition.
It also implies that the decorrelation approxima-
tion will be inaccurate by a maximum of -20%—if used for a chaotic field. The difference be-
tween chaotic and phase-diffusion fields decreas-
es as the bandwidth increases becoming about 6%
for 5 = 5K,. We note here in passing that we have
found similar behavior also when 11) and 12) are
coupled through an N-photon transition. "'"

In Fig. 2, we present results for resonance
fluorescence in a strong chaotic field. The dashed
curves correspond to a phase-diffusion field and
the solid curves to a chaotic field. In both cases,
the calculation is for fields exactly on resonance
and with bandwidth b =K,. Recall that for a mono-

chromatic coherent field, the spectrum of the
spontaneously emitted photons ~„hasthe well-
known triplet structure with the central peak at
the frequency of the strong field, and the side-
bands shifted by an amount equal to the Rabi fre-
quency. '4 The overall structure is preserved in
a phase-diffusion field of finite bandwidth. Under
a chaotic field of the same bandwidth, the spec-
trum undergoes a dramatic change. The triplet
structure is still there, but much less pronounced
with only the central peak being clearly visible.
The main reason for the near obliteration of the
triplet structure is that the sidebands are smeared
because the amplitude fluctuation causes fluctua-
tion of the Rabi frequency. This suppression of
the sidebands had been anticipated qualitatively
by Avan and Cohen-Tannoudji, ' but the triplet
structure is not washed out completely as their
argument had suggested. The central peak is af-
fected somewhat by the amplitude fluctuations,
but it broadens mainly because of the finite band-
width. For a chaotic field of zero bandwidth, we
have found that the central peak remains essen-
tially unchanged while the triplet structure is
smeared out. In that case, the splitting turns
out to be equal to 0/u 2 and not A. As is evident
in Fig. 2, the on-resonance splitting for a chaotic
field is smaller than that for a phase-diffusion
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H:G. . 1. Saturation of a bvo-level system under a
strong stochastic field. The ratio R = (p22(~)) /(p»(~)
is shown as a function of 0/~2 for 6=0. The curves
numbered 1 to 6 correspond to field bandwidths b = 0,
02Kps . K2e Kp~ 2K2s and 5K2,

FIG. 2. The spectrum of resonance fluorescence un-
der a strorg stochastic field exactly on resonance (~
=0) and of bandwidth 6 =w2. The dashed curves corre-
spond to a PD field and the solid curves to a CH. The
spectrum of the fluorescent photons && is plotted as a
function of (&& -&)A, where & is the atomic freQuency
and & the averaged Rabi frequency as defined in the
text. Only half of the symmetric spectrum is shown.
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FIG. 3. ac Stark splitting under a resonant Q, =O)

strorg stochastic field in double optical resonance.
The averaged population (p33) of the third level is plot-
ted as a function of the detuning 6' of the probe field
measured in units of Rabi frequency ~. The dashed
curves correspond to a PD field and the solid curves to
a CH. The primed quantities 0' and b' correspond to
the probe field, and ~3 is the spontaneous decay width
of level 13). All widths are given in inverse seconds.

field of the same bandwidth and intensity.
We turn finally to the effects of field fluctuations

on Stark splitting in double optical resonance.
The TLS is again coupled to a near-resonant
strong stochastic field Ih(t)e' '+c.c.] while a
second weak stochastic field [@'(t)e' '+c.c.] is
nearly resonant with a second transition I 2&- I 3& .
In Fig. 3 we show results for two different inten-
sities of strong chaotic fields of finite bandwidth.
In the same figure, results corresponding to
phase-diffusion fields of the same bandwidth and
intensities are also shown. The most striking
feature in Fig. 3 is the substantial broadening of
the peaks caused by the amplitude fluctuations of
the chaotic field. That this is not a result of the
finite bandwidth alone becomes evident by no-
ticing the difference from the corresponding
curve for the phase-diffusion field. Our calcula-
tion corresponds to an experiment on Stark split-
ting in three-photon ionization that we have ana-
lyzed in a recent paper" using a phase-diffusion
model. That analysis had left unanswered the
question of the origin of the substantial broaden-
ing (beyond the laser bandwidth and ionization
widths) that was evident in the experimental data.
Our present results, as illustrated in Fig. 3,
provide the answer. The laser field of the experi-
ment did have amplitude fluctuations, although it
may not have been chaotic. It must be stressed
here that this additional broadening is present
even for a chaotic field of zero bandwidth since it

is an effect basically related to intensity fluctua-
tions. We have also obtained a number of other
new results especially for off-resonant excitation
which will be presented elsewhere.
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Pure rotational transitions in doubly degenerate torsional states of C286, with selection
rules 4&=0, ~=0,+1, are shown to be made allowed by Coriolis interaction between
torsion and dipole-allowed vibrations. Expressions for integrated intensities are pre-
sented from which strengths of lines in the millimeter region are calculated.

Pure rotational transitions of highly symmet-
ric molecules containing no permanent dipole mo-
ment has been, until recently, considered to be
forbidden. ' It has been shown theoretically that
vibration-rotation interaction induces otherwise-
forbidden rotational transitions in molecules,
provided that they contain no center of symme-
try. ' ' Such forbidden transitions have been ob-
served, with use of a variety of experimental
techniques, in tetrahedral molecules' such as
CH„and in symmetrical tops' such as AsH, and
PH3.

Ethane, C,H„is generally thought of as con-
taining a center of symmetry and belonging to the
point group DM, corresponding to the equilibrium
configuration of the rigid molecule. The hindered
internal rotation, allowing tunneling from one
equilibrium position to another, is not included
as a symmetry operation in the group DM. Hou-
gen' has shown that the proper symmetry group
which takes into account all the feasible permuta-
tions and permutation inversions in ethane (which
includes tunneling) is G„.According to this
group, ethanelike molecules contain no center of
symmetry and pure rotational transitions are
therefore not strictly forbidden.

It is the purpose of this Letter to establish that
pure rotational transitions in ethane are made ac-
tive via an effective dipole moment arising from
torsion-vibration-rotation interaction, and to
present selection rules and expressions for the
integrated intensities of such transitions. An es-
timate of the strength of lines in the microwave
region will be given.

The interactions giving rise to these forbidden
transitions are identical to those inducing the
otherwise-forbidden pure torsional transitions

observed in C,H, (Ref. 8) and C,F, (Ref. 9). These
interactions, which have been discussed by Egg-
ers" and by Eggers, Lord, and %ickstrom, '
arise from the x,y-type Coriolis interaction coup-
ling the torsion with the dipole-allowed doubly de-
generate vibrations, and the z-type Coriolis in-
teraction coupling the torsion with dipole-allowed
nondegenerate vibrations. The selection rules
and the corresponding transition intensities can
be derived from an effective dipole moment in
the space-fixed frame, given by

t'~ =Ra (i)~-

g~D ~ @~i J r (K~(d = 0~+ l),
where p. is the effective dipole moment in the
molecule-fixed frame, D ~'~* are the rotational
matrices, J and I'y are the components of the
rotational and torsional angular momentum, re-
spectively, y is the torsional coordinate, and p.

~

are coupling constants that obey the relation p, ,
T=P-y &Po

The form of the dipole moment in Eq. (l) can
be derived from symmetry considerations alone.
However, the dependence of the constants on the
molecular parameters can be obtained by apply-
ing a contact transformation" that removes the
off-diagonal Coriolis terms from the first-order
Hamiltonian to the vibrational dipole moment.
For example, a contact transformation that re-
moves off-diagonal terms from the Hamiltonian
of the type

—2A f4 ~ Q„~J~Py (n =x, y, g),

results in the constants p. given by

k=5, 6
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