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%e present here a new approach to nonrelativistic perturbation theory. %'e show that
in problems reducible to one dimension, the energy shifts and wave-function corrections,
including corrections to the position of the nodes, to any order, can be expressed in quad-
rature in a hierarchy scheme. The second-order energy shift calculated is explicitly
shown to be equivalent tc that in the ordinary Rayleigh-Schrodinger theory

and

I 0& =
I e.&+&I e,&+&'I e,&+ " (2)

The subject of stationary-state perturbation
theory is well discussed in most quantum mechan-
ics textbooks. ' In the usual treatment, the ener-
gy shifts and corrections to the wave functions
are expressed in terms of sums over intermedi-
ate states or integrals involving the Green's func-
tions. In this Letter, we shall describe a new

technique that, in one-dimensional problems, and
hence in any problem reducible to one dimension,
yields, in a hierarchical scheme, quadrature
forms for the energy shifts and corrections to
wave functions to any given order in perturbation
theory. We obtain an extra bonus in that the shift
in the nodal positions of the wave function, to any
order, is also expressible in quadrature. The
possible application of this new technique and ex-
tension to three-dimensional problems will be
discussed in detail in a later publication.

Consider a perturbation XV, (r) being introduced
to a nonrelativistic system with a Hamiltonian Hp
=p'/2m +V, (x') whose unperturbed solutions are
known. The Schrodinger equation then becomes

foal

t&=Ã. +hV, )l e&=EI t&. (1)

The state I p& and its eigenvalue E can be ex-
pressed as series in A. :

N

0,"(u) = II (r -o', ') exp[-6,"(r)], (6)

where the perturbed and unperturbed nodal posi-
tions are denoted by n'and o|p', respectively,
and the functions 6"Q) and 6,"(r) are regular.
The perturbed ith nodal position can likewise be
written as a series in X:

Qt —Qrp +X@] +X QQ + ~ ~ ~ ~
i i & 2

In this Letter, we present our new approach to
perturbation theory for the cases N =0 (ground
state) and N =1 (first excited state). The general-
ization to higher excited states is straightfor-
ward.

The ground state. ~Zhe ground-state wave func-
tion of a system is nodeless. Thus the perburbed
and unperturbed wave functions can be written,
in accordance with Eqs. (5) and (6), as

g(r) = exp[- 6(r)] (6)

and

ib, (r) =exp[- 6,(r)].
The function G and its derivative g(r) -=6'(r) can
be expanded as power series in A. :

G(r ) = 6,(x ) +h 6,(r ) +h'6, (r ) +. . .

E =Ep+AE, +A. E2+. .. ,

where

&.I 4.& =E.I 4.& (4)

and

= Qh'6, (t)
f=p

gR) = Zh'g)R),
5=o

(10)

is the unperturbed Schrodinger equation and its
eigenvector I g,& and eigenvalue E, are presumed
known. In the x representation, the wave func-
tions g(u) = (x I g& and g, (x) = (x I g,& are nodeless in
the ground state and have N nodes in the Nth ex-
cited state, and we can ordinarily write, for sys-
tems in well-behaved potentials,

N

tIt" (r) = II g —ct') exp[- 6"(u)] (5)

where g, (x) =- 6,'(s ). Substituting Eqs. (8)-(11)
into the Schrodinger equation (1), we obtain

—~2(g -g')e —(E —Vo —hV, )e (12)

- (g.'-g. ) =2(E.-V.),
—(2g~, -g, ') =2(E, -V,),

(13)

(14)

On comparing coefficients for various powers of
A. , we have .
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- (~EDa Ei'~ =-2(&i+ ~ Etla-i) '-2 Qsi
J"- 1

Equation (13) is the Schrodinger equation for the
unperturbed system. Qn multiplication of Eq.
(14) with the integrating factor exp(- 2G,), it be-
comes

—[g, exp(- 2G, )]' =2(V, -E,) exp(- 2G,). (16)

On integrating both sides from — to + ~, and
using the fact that g, is normalized and vanishes
at both limits, we obtain

z, = fv, q, '( )dx= fv-,p( )dx

whereas according to the Rayleigh-Schrodinger
theory,

&0I v, In)(nI v, I 0)
2 i~i 0 ~E (24)

=f fivxko

41 G140 I

and so

(26)

We now demonstrate the equivalence between Eq.
(23) and (24). On comparing Eqs. (2), (8), and

(10), we have

in agreement with conventional perturbation theo-
ry. With E, thus known, we can perform an in-
definite integral on Eq. (16) to obtain

g, (x) =- I2ip(x)l J „(V,-Z, )p(x )dx, (18)

and hence,

RS
+"

E2 =- „GVp.

On the other hand, from Eq. (16), we have

(gp)' = - 2vp

(26)

(27)

G, (x) = f g, g')dx', (19)

and the lower limit is determined by requiring
that the first-order perturbed wave function is
normalized to unity. The same integrating factor
can be applied to Eq. (15), and it leads to

Hence

E2 = f 2 Gi(g|p)' ~ (28)

Qn integration by parts and using the fact that p
vanishes at both limits, we obtain

(20)

and

Elk)=I2/Pk)IJ z, +l Zz, a. )~4')d~'.

(21)

Equations (20) and (21) form a hierarchical
scheme by which the corrections to the wave func-
tion and energy of the ground state can be calcu-
lated to any order in the coupling constant A. .
These are in quadrature forms and do not involve
the Green's function of the problem. '

It is interesting to show explicitly that the sec-
ond-order energy shift, as given by Eq. (20),
agrees with the usual expression from the Ray-
leigh-Schrodinger theory. For simplicity, we
take the first-order energy correction to be zero,
since one always has the freedom to redefine the
perturbation as V, —(OI V, I 0) . Under this as-
sumption, we have

(29)

which is Eq. (23) in our present approach.
The excited states. —We now extend our tech-

nique to excited states. We shall see that in the
present approach, the corrections to the nodal
positions of the wave function of the excited
states are expressible as quadratures.

For definiteness, we consider the first excited
state which has one node. Its wave function, ac-
cording to Eq. (5), can be written as

y(x) = (x - n) exp[- G(x)], (30)

where G|x) is regular and is expandable in pow-
ers of A. as before, and so is its derivative g.
The Schrodinger equation then becomes

—2[g -g' —2g/(x —n)] =E —Vo —XV, . (31)

Qn expanding both sides in powers of A. , we have

(x —o.) (g,' -g, ') —2g,

g, (x) =- [2IP(x)l f V,p(x'')dx' (22) (32)
and

Z, =- f „2g,'(x)p(x)dx; (23)
which is the unperturbed Schrodinger equation,
and 0,, is the node of the unperturbed wave func-
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tion. To first order in A. we have

(x —n, )(2g,g, -g, ') —2g, —n, (g,'-g, ') =-2(E, —V,)g —n, )+2n, (E, —V,).
On multiplying this throughout by (x —n, ) exp(- 2G,) and making use of Eq. (32) we find

—[g, (x —n, )' exp(- 2G,)]' = —2(E, —V,)(x —n, )' exp(- 2G,) + n, [ezp(- 2G,)]' .
On integrating from —~ to + on both sides, we get

E, = f „V,g —n, )'ezp( 2-G,)dx

(33)

(34)

(35)

=f „Vg,'(x) dx =f „V,p (x)dx, (36)

(37)

in agreement with the conventional Rayleigh-Schrodinger theory. On integrating both sides from —
to Q.„we obtain the first-order corrections to the nodal position of the wave function,

n, =ezp[2GQ(no)] f „2(E,- V,)p(x) dx .
On integrating from — to x on both sides, we obtain a solution to g, :

g, (x) =[1/p(x)]( f „2(E,—V,)p(x')dx' —n, exp[- 2Go(x)]j.
For the higher-order corrections, the following hierarchy equation can be obtained from Eq. (31):

—[g, (x —n, )' exp(- 2G,)]' = n, [ezp(- 2G,)]' —2E,p +E, ,

where

E, (x) =-2n, ,[g, +g,n, /(x —n,)]exp(- 2G,)

(38)

(39)

+ Q Q g,g„,-g ' (x —n, )exp(-2G, )- Q g~g, ,(x-n, )'exp(-2G, )
m= 2 -j-" 0

(40)

and is solvable in a hierarchical scheme.
We have made use of Eqs. (32) and (33), and the second term in equation (40) contributes only when

i - 3. As is obvious from Eq. (32), the factor g,/(x —n, ) in Eq. .(40) is singularity free. Equation (3g)
can then be integrated to yield solutions for E&, o.'&, and g& by use of the following sets of limits:

— to +, —~ to a„and —~ to x.
Then

S, =2 f „E,(x)dx,

n, =exp[2G, (n,)]f „'[2E,p(x) E()x] d-x,

and

g, (x) =[-1/p(x)](n, exp[-2G, (x)]-f „[2E,p(x') E&(X')) dx'j-.

(41)

(42)

(43)

%e have thus expressed all interesting physical quantities in perturbation theory in quadrature forms.
The sums over intermediate states or the Green's function are completely eliminated. The extension
of the present technique to higher excited states is straightforward.

A simple example. —We now illustrate our technique by a simple example. Consider a perturbation
V, given by

V, = [p,~(x x,) p.~(X--x,)1-/(pp. ), (44)

where p, =g,'(x, ) and p, =g,'(X,). This has a zero first-order shift for the ground state. According to
Eq. (18),

g, (x) =[2/p(x)] for x, &x&x„

=0 otherwise.
(45)
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Hence according to Eq. (23) the second-order energy shift is given by

z, =- f"'I.2/p(x)] dx. (46)

On comparing this with the second-order energy shift as calculated in the Bayleigh-Schrodinger theory
we obtain the following sum rule:

(47)

V, = (x —x,)'(x —x,)'. (48)

The height of the barrier between the two valleys
is equal to I(x, -x,)/2]'. The higher this barrier
is, the smaller the wave function in between x,
andx2 is. In the limit that this barrier becomes
infinite, the system will decouple into two sepa-
rate oscillators centered around x, andx„with
identical energy levels. A finite but high barrier
means that almost degenerate energy levels with
the same or opposite parity exist. The perturba-
tion as given by Eq. (44) breaks the symmetry.
This parity-nonconserving perturbation connects
these almost degenerate states, thereby leading
to a large energy shift.

We see that in Eq. (46), the magnitude of the
second-order shift is large if the probability den-
sity in between xy and x2 is small. We give a
physical interpretation to this result in the follow-
ing particular example. Consider a Hamiltonian
whose unperturbed potential is given by

The authors thank Professor T. Banks, Profes-
sor A. Casher, and Professor S. Nussinov for
discussions.

'See, for example, G. Baym, Lactures on Quantum
Mechanics (Benjamin, New York, 1969).

2The fact the second-order energy shift can be ob-
tained without the use of Green's functions or sums
over intermediate states have been emphasized previ-
ously by Sternheimer, Dalgarno and Lewis, and Dal-
garno and Stewart [R. Sternheimer, Phys. Rev. 84, 244
(1951); A. Dalgarno and J. T. Lewis, Proc. Roy. Soc.
London 233, 70 (1955); A. Dalgarno and A. L. Stewart,
Proc. Roy. Soc. London 238, 269 (1969)f. However,
none of these authors expressed their solutions in quad-
rature forms as we have done here. Instead, their
methods involve the solutions of inhomogenous differen-
tial equations. Our present work also goes beyond the
works of these authors in our discussion on the higher-
order corrections.
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From calculations of the E&-E& mass difference and CE nonconservation based on an
effective quark Lagrangian, we limit the ranges of the charged-weak-current mixing an-
gles 0& and 0&, and phase parameter 6. The relative strength of b u and b e couplings
is determined versus 8&.

In the sequential six-quark SU(2)~SU(1) model,
the left-handed (t, 6')~ is added to the doublets
(u, d')I, , (c,s')~ of the standard model. " The 8
&3 unitary matrix U which relates the gauge-
group eigenstates (d', s', b')I, to the mass eigen-
states (d, s, b) contains three rotation angles 8;
and a CI'-nonconserving phase 6. In the form in-
troduced by Kobayashi-Maskawa, ' the matrix U

can be written

c,
U = -s,c2

S~S

S &C3
iV

C,C2C, +S2S3e
ib

C~S2C~ —C2S 38

SgS 3

C g C2S 3
—S2C3e

R
C~S2S 3+ C2C3e

where c; = cos(9, and s; = sir8;. By suitable choices
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