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It is shown that the adoption of the hydrodynamical viewpoint in quantum mechanics pro-
vides a way to explain experimental results while giving electromagnetic potentials no

more physical significance than they have in classical physics.

In the "hydrodynamical" formulation of quantum
mechanics, ' the Schrodinger equation is replaced
by a set of nonlinear equations for the density of
probability p and the density current S. This for-
mulation entered the controversial history of the
Aharonov-Bohm effect' because fields, and not

potentials, appear in the hydrodynamical equa-
tions so that, in the time evolution of p and S de-
scribed by these equations, there is no room for
potential effects, in striking contrast with the the-
ory of Aharonov-Bohm based upon the Schroding-
er equation. ' In the theoretical prediction of the
Aharonov-Bohm effect one deals with electrons
moving in a multiply connected configuration
space. The purpose of this paper is to point out
that the relationship between the Schrodinger
equation and hydrodynamical equations undergoes
a significant modification when one considers
multiply connected domains and that no paradox

occurs once the correct relationship between the
two formulations is taken into account. Let us
briefly review some facts about quantum mechan-
ics in multiply connected regions such as the ex-
terior of an impenetrable solenoid. In this re-
gion there is a class of transformations of the
electromagnetic potentials which are permissi-
ble, in the sense that they leave unchanged both
the behavior at infinity and the fields in the al-
lowed domain, and which are not eliminated by
the usual gauge divA= 0. Let one such transform
carry A into A'. The Schrodinger equation is not
invariant under this transform unless (e/c) P&(A
—A') ds =rA, the contour embracing once the for-
bidden region; in this case to A and A' corre-
spond unitarily equivalent Hamiltonians. Thus,
for a given field, one obtains as many nonequiva-
lent Hamiltonians. Thus, for a given field, one
obtains as many nonequivalent Hamiltonians as
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where

F=e[E+c 'vx H].

The problem of finding the solutions of Eqs. (1),
under the additional conditions that u be a gradi-
ent and that

rotv+ (e/mc)H=0, (2)

is shown to be formally equivalent to the solution
of the Schrodinger equation for a particle moving
in the electromagnetic field E, H with

g = exp(R+iS),

gradR = (m /h)u,

gradS= (m/h)[v+(e/mc)A]; rotA= H.

Equations (1) were derived by Nelson' in his well-
known attempt to give a stochastic interpretation
of quantum mechanics. Since we shall use Eqs.
(1) as our starting point, our remarks about the
Aharonov-Bohm effect may also be considered as
being made from the standpoint of stochastic
mechanics.

Equations (1) are related to the usual hydrody-
namical formulation through

u = (h/2m)(1/p)gradp, v = J/p.

Consider now the initial-value problem (1) and

(2) in the exterior domain of a reflecting cylinder
and assume that E=H=O in this domain. If we
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there are points in the unit circle. There are a
number of different ways to attain this result.
For instance, it has been shown within the frame-
work of the path-integral formalism that there
are as many distinct propagators as there are
distinct unitary representations of the homotopy
group. If one regards the ideal multiply con-
nected situation as the limit of a simply connect-
ed one .g. , when a potential barrier is raised
around the solenoid —one is led to conclude that
the appropriate Hamiltonian is obtained when A

is the Stokesian vector potential of the magnetic
field inside the cylinder: This is the Aharonov-
Bohm effect in nuce.

We will now show that the hydrodynamical ap-
proach to the question assigns a definite role to
all these Hamiltonians, without calling for hidden
magnetic fields. Consider the following set of
equations:

Bu/M = —(h/2m)grad(divv) —grad(v u),

Sv/Bt = (1/m)F —(v ~ grad)v

+(u grad)u+(h/2m)&u,

let w=v+iu, Eqs. (1) and (2) assume the follow-
ing form reminiscent of ordinary hydrodynamics:

(&w/Bt) +(w grad)w+ (ih/2m)hw= 0,

rot w=Q.

(5)

(5')

For our present purposes it will not be necessary
to fulfill the delicate task of specifying appropri-
ate boundary conditions on the surface of the cyl-
inder beyond the natural requirement that v„= 0
there. Equation (5') and Clebsch's theorem now
tell us that:

w= grad(p + a (6)

8( i . e-
2mk

—ih grad ——A
C

(8)

This is the Schrodinger equation for a particle
moving outside the cylinder; indeed, it is exactly
the equation that one would write if he were will-
ing to take into account a magnetic field inside
the cylinder with A as its Stokesian vector poten-
tial. ' Of course this magnetic field is completely
fictitious. The point is that the (formal) equiva-
lence between the Schrodinger equation and Eqs.
(1) and (2) is lost when multiply connected regions
are taken into account. The evolution of w (or
p, S) cannot be found by prescribing one Schrodin-
ger equation once and forever. Because of the
multiple connectedness of the domain P does not
completely describe the hydrodynamical (irrota-
tional) field w. An additional datum must be sup-
plied, namely, the time-preserved quantity $&w

where rot a = 0, div a = 0. Since u is a gradient a
is a real vector; it satisfies the equation

)~a ds= $~w(t) ~ ds,

where the contour y winds once around the cyl-
inder. The right-hand side of (7) is independent
of t. To see this, choose a y lying on the surface
of the cylinder, and let y be carried into y' at
time t' by the flow v: y', too, lies on the cylin-
der The.n gziw(t') ~ ds = few(t ) ds follows from
(5) much as in usual hydrodynamics. Moreover,
$z w(t') ds= few(t') ~ ds thanks to Eq. (5'). Then,
once w(0) is given, Eq. (6) can be satisfied at all
times by the choice

a = (1/2mr) [f &w(0) d s]8,

where 0, at a given point, is the unit vector nor-
mal to the plane through the point and the axis of
the cylinder.

Writing g = exp[i(m/h)p* ), A= —(mc/e)a, one
easily deduces from Eqs. (5) and (5')
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~ ds. As a. result, the time evolution in the space
of (irrotational) data w does not project on a
uniquely defined evolution in the space of data g.
Suppose now that one is interested in the time
evolution of a beam of particles initially directed
straight towards the cylinder. Since &P ds =0,
the appropriate Schrodinger equation is the one
with A=0. This means that things go in exactly
the same way, no matter what fields there are
inside the cylinder. However, using a different
Hamiltonian to let the same initial situation
evolve is inconsistent with Eqs. (1) and (2).

At this point one might be tempted to say that
some evidence of the effectiveness of the poten-
tial can still be supplied while keeping away from
idealizations such as multiply connected domains.
To this end one should screen the solenoid by
means of a potential barrier of increasing height
and then compare the time evolution of a given
initial situation with the current in the solenoid
switched on or off. Now, if one observes the
evolution of the given wave packet in the two cas-
es, he will find that these evolutions are different
and that the difference shows no tendency to van-
ish when the barrier is increased. This is no
evidence at all of an effect of the potential be-
cause the same initial wave function P gives rise
to two different initial conditions in the space of
data' p and 7 whose evolution, on the other hand,
being governed by Eqs. (1), depends only on field
strengths and not on potentials. One should in-
stead compare the time evolutions subsequent to
the same initial assignment of w, but this cannot
be achieved because of the condition (2) which for-
bids that a field v which can be deduced by some
wave function in the presence of nonzero un-
screened magnetic field can also be deduced by
a wave function with zero magnetic field. Thus
one of the terms of comparison is actually lack-
ing.

Now, let 4 denote the magnetic flux inside the
solenoid. When the potential barrier is increased,
we approach the ideal multiply connected situa-
tion in which a beam with fv ~ ds= ec'/mc (and-

not one with Pv ds = 0) is scattered by an impen-
etrable cylinder. The appropriate Hamiltonian is

now, according to our view, the one where A is
the vector potential of the magnetic field inside
the hardened cylinder. Thus the hydrodynamical
theory of the ideal case can indeed be used to ap-
proximate real cases.

In conclusion our analysis, though rather heu-
ristic in character, shows that the adoption of
the hydrodynamical viewpoint in quantum mechan-
ics provides a way to explain experimental re-
sults while giving electromagnetic potentials no
more physical significance than they have in
classical physics.
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The decomposition (6) is not unique. Different choices
of a are possible (with the same f a, ~ ds, of course); it
is even possible to accept a=0 and Eq. (6) to hold only
locally, y being a multivalued function. These alterna-
tives lead to Schrodinger equations formally different
from (8); of course, the Hamiltonians appearing in
these equations are all unitarily equivalent to the one
of Kq. (8).

We remark that in the two cases considered, a given
wave function gives rise to the same initial average val-
ues (q) and (p) of the canonical coordinate and momen-
tum operators but to different (q).
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