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A quantitative derivation is presented for the production of the acoustic signal in a
photoacoustic cell, taking into account the finite surface thermal resistance of the solid.

The photoacoustic (PA) spectroscopy has
proved'™® to be an extremely useful tool for stud-
ying absorption spectra of crystalline, powdered,
‘and amorphous solids as well as biological ma-
terials and liquids. In this Letter we develop the
theory for the PA signal of a solid, taking into
account, however, the surface thermal resistance
of the sample. Our approach follows closely that
of Rosencwaig and Gersho? (RG) and we refer to
their work for further details.

Consider a simple cylindrical cell of diameter
D and length L=1+1[,+1,. The sample is consid-
ered to be in the form of a disk having diameter
D and length I. A sinusoidally chopped mono-
chromatic light with wavelength X is incident on
the solid with intensity I=1I,(1+ coswt)/2, where
I, is the incident monochromatic light flux and w
is the chopping frequency. We further assume
that the gas and the backing materials are not
light absorbing. We define the following param-
eters: k;, thermal conductivity of material i; c;,
specific heat of material ¢; p;, density of mater-
ial i; a;=k;/p;c;, thermal diffusivity of material
i; a;=(w/2,;)"/%, thermal diffusion coefficient of
material i; 4;=1/a;, thermal diffusion length of
material ¢; 38, optical absorption coefficient of
the solid sample. Here, the subscripts i=s, g,
or b, denote the sample, gas, or backing mater-
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ial, respectively. Let ¢,(x,t) denote the temper-
ature in material { relative to ambient tempera-
ture (7,) due to the light into heat conversion
process. By neglecting the heat losses by radia-
tion at the lateral surfaces (the inclusion of lin-
ear heat losses can easily be done), the temper-
ature in cell obeys the same thermal diffusion
equations as those of RG theory.?

The real part of ¢,(x,t) is, of course, the solu-
tion of physical interest. This, in turn, is ob-
tained by solving the thermal diffusion equations
together with the appropriate boundary conditions.
In the RG (Ref. 2) and other theories®"® the bound-
ary conditions are temperature and heat-flux con-
tinuity at the sample boundaries x =0 and x =-1,
together with the constraint that the temperature
at the cell walls is at ambient temperature [i.e.,
@ (x=1,,t)=@,(x==1-1,,t)=0]. This latter con-
straint is a reasonable assumption for metallic
cell walls. On the other hand, the condition of
temperature continuity at the faces x =0 and x=-1
is a very restricting one. In the general case,
temperature continuity at the face of two bodies
is only valid for very intimate contact, such as a
soldered joint.* In all other cases, even for op-
tically flat surfaces pressed lightly together,
heat transfer between two media takes place
largely by the linear heat-transfer mechanism,
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in which case the heat flow across the boundary

of two media ¢ and j is proportional to the temper-
ature difference between them, i.e., H(@; - ¢;).
Here H is a constant called® the coefficient of

heat transfer. The constant H is often specified
in terms of the surface thermal resistance R=1/H,
and it depends on the actual heat-loss mechanism.
Hence, for nonvanishing surface thermal resis-
tance, the temperature continuity condition at

the boundary of two media ¢ and j should be re-
placed by the requirement that®

-K;99;/on=H,(@; -¢,), (1)

where 8/9n denotes differentiation in the direction

mal resistance (i.e., H;=»), Eq. (1) reduces to
the temperature continuity condition. Physically,
this case of zero thermal resistance means that
the heat transfer between the two media is instan-
tanedus or, alternatively, that the surface emis-
sivity is infinite. Since the heat-transfer time

is roughly of the order of the thermal diffusion
time in the sample (~12/a,), one should therefore
abandon the temperature continuity condition at
the sample boundaries. Neglecting transients as
well as the dc components, the solution cpg(x,t)
employing the new boundary conditions is then
given by

of the outward normal to the boundary face of @ (x,t)=06 exp(-0,x) et (2)
material i. We note that in the case of zero ther- ¢
where
0= BI, <(1f— 1) +1) exp(o,l) = (r + 1)(¢ — 1) exp(~ osl)-2(r—§)e'6’ (3)
kB2-0)\ € +1)(g/h+1+g)exp(ol)+(&-1)(g/h+1-g)exp(-0,l) > '

Here g=k,0,/k,0,, b=k,0,/k0,, v=B/0,, h=H/
ksog, and £ =bh/(b +h). In the limit of zero therm-
al resistance (i.e., k—~«) Eq. (3) reduces to the
result of the RG theory.2

Once we know the temperature in the gas, we
now assume the RG acoustic piston model? for
the production of the acoustic signal in the gas.
By evaluating the spatially averaged temperature
of the gas within the boundary layer, and proceed-
ing similarly as in Ref. 2, the incremental pres-
sure, 6P(t), in the gas can then be written as

0P (t) =P, 6x(t)/1,=Qexp[j(wt —1/4)],
Q=vPON2l,a,T,

(4)

with P, being the ambient pressure and ¥ is the
ratio between the specific heats of the gas. Equa-
tion (4) is the expression for the PA signal one
wants to discuss. As the expression for @ is, in
the general case, quite complicated we shall con-
sider only a few special cases where it becomes
relatively simple.

Optically opaque and thermally thin solid—In
this case the thermal diffusion length u =a, ™' is
much larger than the solid thickness which, in
turn, is much larger than the optical absorption
length 81, I.e., one has BI>1 and B>a,. Itis
important to notice that this condition of optically
opaque and thermally thin solid is not uniquely
defined by the condition of a very black absorber
such as carbon black; it does depend on both the
sample length as well as on the working frequency
range. We shall find it useful to rewrite the con-

[dition la,«1 as

(Fr) 2«1, T,=1l%/a,.
d ’ d s

(5)

Here 7, is the thermal diffusion time® in the sam-
ple. Hence, by thermally thin solid we mean the
situation in which the thermal diffusion time is
much smaller than the chopping period. Setting
in Eq. (3) exp(-Bl)~0, exp(xo,l) 1, and I7|>1,
assuming that H is given by the blackbody mech-
anism® (i.e., H,=4oe T, with o being the Stefan-
Boltzmann constant), and using the values of the
physical parameters for typical gases and back-
ings, one can show that » <g <b, so that{ =k
and 6 ~ (1 -4)T,/4k,a,. We then get, from Eq. (4),

Q= (1 "]) YPQIQ _gg_

2 N2LT, kS

(6)

Equation (8) tells us that for optically opaque and
thermally thin solids the PA signal is independent
of B, varies inversely proportional to the fre-
quency, and depends only on the thermal proper-
ties of the gas a,/k,. The corresponding RG re-
sult differs from Eq. (6) only through its depen-
dence on the thermal properties; instead of the
factor a,/k,, the RG theory predicts (o, ag)l/z/kb.
I.e., the RG expression for the PA signal of an
optically opaque and thermally thin solid depends
on both the gas and the backing thermal proper-
ties, but has the same frequency dependence as
ours (f71).

Physically, the dependence on the thermal
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properties of the gas that we found can be under-
stood as follows. The quantity H, measures the
rate of heat transfer per unit area per unit time
into the gas, so that one may define the length [/,
of heat transfer into the gas as [, =k /H,=k R,
from which we can also define the corresponding
time for heat transfer into the 7,, namely, 7,
=ml,2/a . We have

Lag~h"*. (M

Since k « 1, it follows from Eqgs. (7) and the con-
dition la; «1, that the length of heat transfer into
the gas is much larger than the sample length.
This, in turn, means that the heat generated with-
in the very small surface layer (8°!) of the solid
by the absorbed light is initially transferred into
the gas instead of propagating first through the
sample. In the case of zero thermal resistance,
1, =0, so that the heat in the surface layer of the
solid first propagates through the sample. As a
result the PA signal should now depend on the
thermal properties of the backing.

Optically opaque and thevymally thick solid.
— This is the case where the thermal diffusion
length  is smaller than the sample length but
larger than the optical penetration depth; i.e.,
one has BI>1, la,>1, and B>a,. Hence, if we
set in Eq. (3) exp(~B!)~0, exp(-0,l)~0, and lr|

>1, one gets 0=—jI H /4 ;a k,a,, which after
substituting into Eq. (4) gives us
Q= J YPOIOHi asl/zaz (8)

- 2”372 zﬁlgTo kskgf3/2 .

I.e., for optically opaque and thermally thick
solids the acoustic signal is independent of 3,
varies inversely proportional to f 3/ 2 and depends
on the thermal properties of both the sample and
the gas. Its dependence on the thermal proper-
ties of the gas is the same as in the previous case
of thermally thin solid. Actually, Egs. (8) and

(6) differ roughly by a factor (/,a,)"*. The cor-
responding RG result differs from Eq. (8) through
its dependence on both the chopping frequency

(f ") as well as on the thermal properties of the
gas.

Summarizing, the differences we have found
for the frequency dependence of the PA signal
between the cases of thermally thick (~ f ~¥/2)
and thermally thin (~ f *!) samples may be under-
stood as follows. As previously noted, the case
of thermally thin sample means that the solid-
gas heat transfer is instantaneous. I.e., the time
it takes for the heat generated at the sample be
transferred to the gas is much smaller than the
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period f *'. Hence, at a given light pulse, all

the heat from the proceeding pulse has been com-
pletely transferred and the gas has thermalized.
On the other hand, for the thermally thick case
one has the opposite situation, namely, that a
finite time is required for the solid-gas heat
transfer. This means that the heat coming from
a light pulse may still be being transferred at

the moment of arrival of the next one. This
makes these two cases physically different, hence
producing a different time dependence, and one
should expect a different frequency dependence.
In the case of RG theory, however, the boundary
-condition used (temperature continuity) implies
that the heat transfer is instantaneous for both
cases. Consequently, it is no surprise that the
frequency dependence (~f ~!') found by RG should
be the same for both thermally thin and thermally
thick samples.

To compare the above predictions with those of
RG theory we have performed measurements of
the PA signal of a germanium sample of 480 um
in thickness in a wide range of frequencies, chang-
ing, however, the cell’s gas. Of course a more
dramatic illustration of the differences brought
in by the introduction of the surface thermal re-
sistance would be to plot the frequence dependence
of the PA signal for the thermally thick case.
However, this kind of plot requires the knowledge
of the cell’s response (cell plus detection system)
as a function of the chopping frequency. I.e., the
experimentally observed PA signal is actually
the product of Eq. (4) times the cell’s response
function. Since this is not an a priori known func-
tion, we avoided this difficulty by looking at the
gas-parameter dependence of the PA signal.

The gases used were helium and air. The ex-

TABLE I. Observed ratio of the PA signal of a Ge
sample of thickness ! =480 um in the He-filled to that in
the air-filled cell as a function of the chopping frequen-

cy.

Frequency 1Q e (He)l
(Hz) Qe (air)
30 1.3%0.1
53 1.6£0.16
95.4 1.8+0.18
157 2.0+0.2
250 2.4+0.24
894 1.8+0.18
1530 1.3+0.13
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FIG. 1. Ratio of the PA gignal of a Ge sample of 480
pm in thickness for an He-filled to an air-filled cell as
a function of time. The circles and triangles are the
experimental points for the chopping frequencies of
1530 and 30 Hz, respectively.

perimental apparatus consisted primarily of a
500-W tungsten-filament lamp, a variable-speed
light chopper, an aluminum cylindrical cell with
an electrect microphone, and a lock-in amplifier.
The light from the filament lamp with a filter to
cut the contribution from wavelengths greater
than 5000 A. This assured us that the sample is
optically opaque (8= 10* cm™?) for our light
source. Using the appropriate values of the phys-
ical parameters for Ge (a,=0.4 cm® s™'; k,=0.67
W/cm sec K), itfollows from Eq. (5) that for our
particular sample thickness, Ge, is thermally
thick for f above 55 Hz, and thermally thin below
it. Hence, the ratio of the PA signal of our Ge
sample for the helium-filled cell to that of the
air-filled cell should give us the same value at
both high and low frequencies. I.e., according
to Eqgs. (6) and (8) at both high frequencies (ther-
mally thick) and low frequencies (thermally thin)
one should get | Q. (He)l /1@ (air)|=1.3. On the
other hand, according to RG theory, this ratio
would be equal to [cf. Egs. (26) and (27) of Ref. 3]
2.7, both at high and low frequencies.

In Table I we present the ratio of the PA signal
of our Ge sample for the He-filled to the air-
filled cell as a function of the chopping frequency.

One notices that, both at high and low frequen-
cies the experimental results agree very well
with the predictions of our model. In the inter-
mediate frequency range the PA signal is, of
course, not given by the simple expressions of
Eqgs. (6) and (8) but rather by Eqs. (4) and (3).

To make sure that the PA signal for the He-filled
cell was correct, we have measured it as a func-
tion of time. This procedure was then repeated

3 times at each frequency, which assured us ade-
quate reproducibility of our measurements. The
reason for doing so is that, because of its light-
ness and smallness, helium has a high escaping
rate from closed cells. A typical plot of the
acoustic signal for the He-filled cell as a func-
tion of time is shown in Fig. 1. The ratio of the
He-to-air signal is then calculated from these
plots from its value at ¢ =0.

Finally, as a further check of the present the-
ory, we have measured the PA signal for Ge in
the low-frequency range (<25 Hz) for different
backings; those used were Teflon and brass. The
observed signals were found to be independent of
the material used. This result is again in strong
support of the present theory and in contrast with
RG predictions. The RG theory, for optically
opaque and thermally thin samples, predicts that
the PA signal should depend on the thermal prop-
erties of the backing as (ab)l/z/k,, , whereas from
our model [Eq. (6)] it should be independent of
the backing material.
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