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Propagating Energy Modes in the Classical Heisenberg Chain: "Magnons"
and "Second Magnons"
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The ferromagnetically coupled classical Heisenberg chain in an applied magnetic field
has been studied by computer simulation. The results indicate the presence of a second
collective mode, in addition to the damped spin-wave-like modes which have previously
been observed in the absence of a magnetic field. For intermediate wavelengths, the
mode manifests itself by well-defined oscillations in the energy-density correlation
function, and by a second peak in the spectrum of the longitudinal spin-density correla-
tion functions.

It is now well established that a classical one-
dimensional Heisenberg magnet can support
short-wavelength propagating spin-density modes,
in spite of the lack of long-range order. The ex-
istence of such modes can be understood in terms
of the strong short-range order present in one-
dimensional magnets at low temperature (ks T
&

~ J~), the short-range order being characterized
by an inverse correlation length v which, for low
temperatures, is proportional to the tempera-
ture. For wavelengths less than ~ ' the system
appears ordered, and can therefore support col-
lective spin-density oscillations, or "magnons";
however, the overall lack of long-range order

leads to a damping of these excitations, and this
damping increases as the temperature is raised.
This qualitative picture is confirmed by a num-
ber of theoretical" and computer-simulation
studies, "'and is also in agreement with experi-
mental results on (CD,),NMnCl, ."

In this Letter, we report computer simulation
results which show that an applied field leads to
striking new features in the response functions of
the classical Heisenberg chain, for the case of
ferromagnetic coupling.

Our computer-simulation calculations are based
on the method described in detail in Steiner, Vil-
lain, and Windsor' and in Windsor and Wheaton. '
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Besides including the effects of the applied field,
we have improved the accuracy with which the
equations of motion are integrated, which per-
mits simulation over much longer periods of
time. '

The computer simulation is performed for a
system of N classical spins 5;, i = 1,2, . . . , N,
which we shall take to be unit vectors. The cal-
culation is performed in a canonical ensemble,
a Monte Carlo procedure being used to simulate
a spin array in thermal equilibrium at the re-
quired temperature. For each spin array chosen,
the motion of the spins is evaluated by integra-
tion of the etluations of motion (5= 1),

where J&0 for ferromagnetic coupling, the lat-
tice spacing has been taken as unity, and factors
of the gyromagnetic ratio and Bohr magneton
have been absorbed into the field h, which has
been chosen to lie along the z direction. For
later reference, we introduce the reduced tem-
perature T* = k s T/~ J

~
and reduced field h * =h/~ J'~.

We have used a seventh-order approximation for
integration of the equations of motion, the re-
quired derivatives being calculated by repeated
differentiation of (1). We have calculated'both
the spin-spin and energy-energy density correla-
tion functions, defined by

C (g t)
a) —0.02

above, we have taken %=80.
In Fig. 1(a), results for the longitudinal spin-

density correlation function C, (q, t ) for finite
field (h* = 1.0) and zero field are compared, for
q =0.2z. For this wave vector, the field is seen
to have a pronounced effect on the time depen-
dence of the correlation function, but with in-
creasing wave vector the effect is less marked.
The effect of the field is even more pronounced
in the behavior of the energy-density correlation
function C (q, t), which is plotted in Fig. 1(b),
again for h* = 0.0 and 1.0 and for the same wave
vector. In zero field, the decay of C (q, t) is
strongly damped for all wave vectors, and gives
little indication of oscillatory behavior, while for
h* = 1.0 the correlation function shows clear os-
cillatory behavior, characteristic of a damped
propagating mode. The correlation function con-
tinues to show oscillations, but with increasing
damping, as the wave vector is increased.

The behavior of this "second magnon" mode is
more transparent in the frequency spectrum of
the correlation functions and, because it is di-
rectly related to', for example, the neutron scat-
tering cross section which one would observe in
a "real" experiment, we have concentrated on

C.'(q, t) =(s, (0)s,"(t)) -(s, )',
o' =x, y, z, C (q, t) =, (0)E,(t)) —(E,)',

(2) 0.2
—0.01

0

where S, and E, are Fourier components of, re-
spectively, the spin components and the local en-
ergy density. The angular brackets denote an en-
semble average which, in the simulation calcula-
tion, corresponds to an average over N, starting
arrays, chosen independently by the Monte Carlo
procedure.

In order that size eff ects should not be impor-
tant, the number of spins K must be much great-
er than the correlation length I(.

" ', and must also
satisfy N&vt, where v is the maximum veloc-
ity of propagation of excitations. ' Assuming the
latter to be given approximately by 2~ J~ {the spin-
wave value), we obtain the condition N) 2~ J~t,„.
The calculations which we report below are for a
ferromagnetically coupled chain at a reduced tem-
perature T* =0.3 and with an applied field h* = 1.0,
and also h* =0.0 for purposes of comparison. The
equations of motion have been integrated up to
times t = 20~8~

' and, to satisfy the condition
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FIG. 1. Comparisons of the variation with time of
(a) the spin-density and (b) the energy-density autooor-
relation functions with an applied Geld 8*=1.0 (full
lines) and in zero field (broken lines) for a wave vector
q = 0.2&. The vertical scales on the right are for h*
=1.0, those on the left for 8*=0. Averages and rms de-
viations (error bars) were obtained from five runs
each averaged over 100' configurations, or 200 config-
urations [{a),k*=1.01.
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the spectrum of the spin-density fluctuations.
Formally, the spectrum F(q, v) is readily ob-
tained as the Fourier transform of the normal-
ized correlation function. However, spurious
features in the Fourier transform can be obtained
because of the cutoff, t,„, on C(q, t), and be-
cause of thermal and statistical "noise. " Conse-
quently, following previous practice, '~' we char-
acterize the frequency response by fitting the
computer simulation data to some suitable func-
tion. We have, in fact, explored several possi-
ble fitting functions, to eliminate the possibility
that any structure found in the spectrum is an
artifact of the fitting procedure. The forms which
we have investigated include a single-damped-
harmonic-oscillator (DHO) form, a sum of two
DHO's, and a form derived from a continued-
fraction expansion of C(q, s), the Laplace trans-
form of C(q, t). For the latter procedure, which
is explained in detail in Ref. 4, we have investi-
gated terminations of the continued fraction at dif-
ferent levels, and we shall refer to the different
forms by the order of the polynomial in v in the
denominator of the resulting expression for E(q,
m). ' It is clear that the amount of structure pos-
sible in the frequency spectrum, obtained by fits
to the simulation data, is limited by the form of
the fitting function, and this means that, for ex-

ample, fits to a single-DHO form, or to the third-
order continued-fraction form, cannot yield a
structure with two peaks at nonzero positive fre-
quencies. However, apart from such considera-
tions, we find qualitative, and even semiquantita-
tive, agreement between the spectra obtained us-
ing different fitting functions, and shall present
only results obtained using the fourth-order con-
tinued-f raction form.

The pronounced modification of the frequency
spectrum, caused by the applied field, is illus-
trated in Fig. 2, which compares the spectra ob-
tained with and without the applied field, for two
wave vectors. While for the larger wave vector
the results are qualitatively similar (although the
field shifts the peak position, narrows the peak
somewhat, and also reduces the weight in the
peak, and enhances the weight in the spectrum at
low frequencies), those for q = 0.2w indicate that
the presence of an applied field induces a qualita-
tively different structure into the frequency re-
sponse, and, in particular, two peaks at nonzero
frequency are apparent. The way in which the
structure changes with wave vector is perhaps
best illustrated by a three-dimensional plot, Fig.
3.

The results which we have obtained indicate
that the spin dynamics of a ferromagnetically
coupled Heisenberg chain are dramatically mod-
ified by an applied magnetic field, and can be in-
terpreted in terms of a second magnon mode,
which is fairly well defined for small wave vec-
tors q (but still such that q) v the inverse corre-
lation length) but becomes increasingly damped
as q increases. In this respect, it should be not-
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FIG. 2. The frequency spectra of the spin-density
correlation function obtained for 6*=1.0 (full line) are
compared with those for h*= 0.0 (broken line) for
(a) 0.27t and (b) q =0.8~.

FIG. 3. The frequency spectra of the spin-density
correlation function, with an applied field k*=1.0,
plotted as a function of both q and u. The spectra are
for q =0.17t to q =7( in steps of 0.05~. The vertical scale
is arbitrary.
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ed that the wave-vector-dependent spin-energy
coupling (measured, for example, by the correla-
tion function (E,8,')) must fall to zero at the
zone boundary. Also, this coupling is much weak-
er in an antiferromagnetically coupled chain, and
one would expect that the second magnon mode
would be much weaker, or nonexistent, for this
case."

Several authors" have discussed the possibility
of a second magnon mode in three-dimensional
(3D) ferromagnets, based on the idea that, at low
temperatures, momentum is approximately con-
served, and this additional conservation law ad-
mits the possibility of an oscillatory motion of
momentum, magnetization, and energy. While
the proposed mechanism is suggestive, one should
be cautious in assuming that it is necessarily rel-
evant to the 1D magnet for which the physics is,
in many respects, fundamentally different from
that of 3D magnets. A theoretical study of the dy-
namics of the classical Heisenberg chain, "based
on the Mori approach to the generalized I angevin
equation, led to results reminiscent of the double-
peak structure which we find (see, in particular
Fig. 1 of Ref. 12). The structure found was much
less marked than the simulation results indicate,
but it can be shown" that, in the short-time limit,
the theory leads to coupled equations of motion
for the magnetization and energy densities, with
coefficients which are calculated exactly, which
yield dispersion relations in satisfactory agree-
ment with those of the two modes found in the
computer simulation results. This suggests that
the original theory underestimated the relaxation
times in the memory-function matrix.

Finally, we turn to the question of whether the
second magnon mode could be observed experi-
mentally. The most investigated' ' ' ' quasi-1D
ferromagnet is Cs¹iF„but this material has a
large single-site anisotropy, with an easy pLane
perpendicular to the c axis. In fact, inelastic
neutron scattering measurements on CsNiF„
with an applied field in the easy plane, have been
made. " The results showed, at low tempera-
tures and with a reduced field h* = 0.25, sharp
peaks in the scattering function, with a disper-
sion relation consistent with the spin-wave result.
It is clear that these authors observed only the
transverse response, and for this component our
computer simulation study, for the isotropic sys-
tem, also shows essentially sharp spin-wave-
like oscillations. With the neutron scattering vec-
tor in the c direction, the observed cross section
has contributions from both the transverse and

longitudinal response functions, weighted by the
corresponding susceptibilities. Since the ratio of
the transverse to longitudinal susceptibility be-
comes very large in a strong field, very good sta-
tistics are needed to see the longitudinal response.
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