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Ground-State Symmetry in XYModel of Magnetism
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Numerical studies by Betts and oitmaa have led those authors to conjecture that in the
Xg model the ground-state magnetization M, is zero. This is a model of spins on a lat-
tice with interactions —J($„"S"+S„~$ ~), that can also describe a hard-sphere boson flu-
id. In the present note I prove the conjecture for arbitrary spins S= 2, 1, 2, ... for
positive J, and treat various generalizations.

In two recent papers, ' Betts and Oitmaa have
commented on the lack of a rigorous proof that
the ground state of an infinite array of spins 2,
i tnreatcingvia —J(S„"S„,"+S„'S ") only, possesses
magnetization M, = 0. This property is strongly
implied by their various numerical experiments
and is shared by other systems- notably the iso-
tropic Heisenberg (XYZ) antiferromagnet —for
which a variety of proofs already exist. ' The
classical-spin, two-dimensional, XF model has
also been of extraordinary interest lately, be-
cause of conjectures by Kosterlitz and Thouless'
concerning the unusual nature of the phase transi-
tion in this system, so that any certain knowledge
concerning the ground state, especially for arbi-
trary spin magnitude 8, will be beneficial. For
J&0 I have constructed a relatively simple proof
valid in any number of dimensions on an arbitrary
lattice, for arbitrary spins 8„(including the clas-
sical limit 8„-~) that M, indeed vanishes (for in-
teger total angular momentum) or has minimal
magnitude —, (for half-integer total angular mo-
mentum) in the ground state. For 8&0 the proof
applies directly only to bipartite lattices, al-
though Betts's latest studies' indicate that the re-
sult of minimal lM, l is always obtained. I con-
firm this by use of a "reference" Hamiltonian.

The coupling constant J&0 and the spins S„are
arbitrary. The magnetization operator is

N

Mg = Pi S„'. (2)

We rotate in spin space 8„'--S„'at all sites.
In the new representation, the Hamiltonian and
magnetization operator s are

H =-ZZ(S„"S "+S„'S ')

M, =-F.S.'=2tZ(S. ' S. ), -
respectively. The Hilbert space consists of
Q(28„+ l) distinct configurations (e.g. , 2" for 8„

It should be noted that the theorem of minimal
IM, I in the ground state does not preclude a phase
transition in any number of dimensions, nor even
the existence of long-range order. It merely con-
firms what should be evident upon minimal reflec-
tion, that M, is not an appropriate order param-
eter in this problem.

Let

a= —ZZ (S„"S„"+S„'S.'),

(n, m) = neighbors.
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40 „=PF„"(„„, with Q~IFn
" I' = 1 (6)

and, according to a well-known theorem of Fro-
benius, has the property that all the E„~"~, for ~
=ev or od, can be chosen real and positive. As
connects all configurations within either sub-
space, no F„~"~ vanishes nor is of opposite (nega-
tive) sign in the ground state. The proof is by
contradiction: If some amplitude were not posi-
tive, the var iational energy Eo „=(4 0 „IIIIe, „)
could be decreased by making it so. However,
Eo „ is already the lowest possible energy for the
respective subspace, hence all F "~ )0. Finally,
the ground state in each subspace is nondegener-
ate, as no other eigenstate of H can satisfy the
condition of all positive amplitudes yet be orthog-
onal to ~ 0 „. We note in passing that in the case
X S„=integer+ &, these results imply Zo „=ED ~,
but not in the other case.

Now, Frobenius's theorem was already well
known to Betts and Oitmaa'2 who, working with
the "natural" operators (1) and (2), noted that
within the subspace of a given M, the ground
state was nodeless and therefore unique, because
M, commutes with H and the eigenstates are cho-
sen to be simultaneous eigenstates of both oper-
ators, this theorem gave them no indication of
which eigenvalue m of M, yields the lowest ener-
gy. The situation is quite different for the Heisen-
berg antiferromagnet, ' of course, for which the .

eigenstates are also simultaneously eigenstates

=—,) of two distinct types:

= Cg(s„) IO) with Zp„=0 2 4 ~ ~ ~ (5a)

and

=Cg(s„')~" I0), with Zp„=1, 3, 5, ... .(5b)

The Hamiltonian has no matrix elements to con-
nect the "even" states to the "odd," therefore the
two subspaces are decoupled and we must study
the ground state of each. We further distinguish
the two cases: QS„=integer and P 8„=integer+ 2.
In the latter case, minimalM, will be+2 and a
rotation of 180' about the S" axis in spin space
serves to interchange the even and the odd states,
as well as to map M, --M„while leaving H in-
variant. This implies an essential degeneracy of
the two subspaces which is absent in the case of
gs„=integer, for which the minimal IM, I is
zero. We shall return to these points shortly.

In the representation of Eqs. (3) and (4), the
S„' are all diagonal, but the operators S„"= —,(S„'
+ S„)are not. The ground state in either sub-
space (ev) or (od) takes the form

of M and where it therefore suffices to study the
subspace M, =0. There is no corresponding sim-
plification in the XY model.

Nevertheless, we can construct a rigorous
proof of the stated theorem. We first recognize
that M, is now an imaginary (albeit Hermitean)
operator, and that it commutes with H and there-
fore can be simultaneously diagonalized. How-
ever, M, connects the two (ev, od) subspaces and
therefore in the cases when the two ground states
are not degenerate, the only possible eigenvalue
of M, is m=0. In the case where there is the es-
sential degeneracy, we can have m=+ z, depend-
ing on the chosen linear combination of 4 0 „and

Now for a rigorous proof we shall con-
struct two wave functions which we can, indeed,
verify as belonging to minimal (M, t and which
are not orthogonal to the ground states of Eq. (6).
It will then follow that the latter also belong to
minimal IM, l.

Consider a "reference Hamiltonain"

(7)

in which every spin on the same lattice as before
interacts with every other spin. On the one hand,
the ground states in the even and odd subspaces
@0,„"have all positive amplitudes, by Frobeni-
us's theorem. They are therefore not orthogonal
to their counterparts in Eq. (6), and therefore
share the same quantum number nz. On the other
hand, the energy levels of (7) are immediately
obtained as E = -N '[I(I+ 1)-m'], with I,„=—ZS„,
I=Imaxy Imax && Imax 2y ~ ~ ~ and pE=Imaxt Imax

I „-2, ... . Evidently, the ground states belong
to I=I~» and m = 0 (I~» = integer) or m =+ 2 (I~„
= integer+ 2 ). Q.E.D.

The reference Hamiltonian also shows clearly
the tendency of the order parameter (total spin
in this case) to be maximal in the XY plane, as
observed in numerical calculations. The spon-
taneous magnetization is never in the z direction
in the ground state, because there is no energet-
ic advantage for the spins to lie along the axis
devoid of interactions.

On a bipartite lattice, the above proofs apply
even if J &0, for we can rotate the spins on the
A sublattice by 180' along some appropriate axis
and effectively reverse the sign of J.

It is therefore challenging to see what happens
on a non-bipartite lattice with J&0. In fact,
Betts' has made some preliminary studies of
spins 2 on a cluster of triangular cells. The tri-
angular lattice is the prototype "frustrated" lat-
tice' for antiferromagnetic couplings, one in
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which it is impossible to satisfy all the bonds in
the ground state. Surprisingly, Betts once again
finds that the ground state belongs to minimum
IM, I f However, the ground state is now highly
degenerate, in contrast to the previous case
where Frobenius's theorem applies. Similarly,
our reference Hamiltonian (V) will, after change
of sign, have not only a uniilue (or doublet) ground
state belonging to I =0 and m=0 (or I=2, m=+ 2)
but a dense spectrum of low-lying states, &/most
degenerate with the ground states (in the limit N

oo I ccN) ~
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A sum rule is derived from the connection of the critical specific heat with the critical
correlation function in the disordered symmetric state. The "Ornstein-Zernike hole"
which appears above the critical point must, by virtue of this sum rule, be canceled ex-
actly by the "Fisher-Langer tail. " It follows that the anomalous dimension index p is
fixed by the shape of the spectral function. A spectral function satisfying certain gene-
ral properties yields q = 0.04.

The order-parameter-order-parameter corre-
lation function, G(l', K), and its Four ler tl ans-
form, g(k', z') describe correlation in configura-
tion and wave-number space, respectively. The
critical-region temperature dependence enters
through the inverse correlation length K and is
expressed by the differences bG(x, K) -=G(x, v)
—G(x, 0) and bg(k', ~')=g(k', 8) --g(k', 0). In many
cases a sufficiently accurate approximation is
the Ornstein-Zernike' formula

g'o (k', ')=G I(k'+ '),
where Coz is a positive constant. In this approx-
imation the critical variation is given by the neg-
ative-def inite expression

OZC
k'(k'+ &') '

But with the experimental precision which can
presently be achieved, ' a more accurate repre-
sentation of g(k', K') is needed. This is also true

in theoretical calculations where g(k', K') enters
as an essential ingredient. An accurate form for
g(k', z') is especially important in calculations
where fluctuations of large k enter in an essen-
tial way, such as in studies of the critical vis-
cosity' and of the critical attenuation of sound.
For k» K the correlation function must asymptot-
ically approach its v = 0 Green -Fisher' form

g'(k', o) =~c~k ""
assuming that k is still small enough to be in the
critical region. Here C~F is a constant and q is
the anomalous dimension index. g is the most
basic of the critical indices and its calculation is
one of the central problems in the theory of phase
transitions. A related problem, generally studied
independently is the detailed k' and ~' dependence
of g(k', v'), i.e., the "shape" of the function. In
this Letter we discuss a sum rule which is equiv-
alent to a certain identity in Lagrangian field
theory. ' This sum rule imposes an intimate con-

1979 The American Physical Society 1505


