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Real-Space Scaling Studies of Localization
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The Anderson model of localization in two dimensions is studied with use of a numericg3,
implementation of real-space renormalization-group transformations. A critical param-
eter W/V is found which separates localized and extended behavior, the latter being char-
acterized by scaling toward strong couplirg.

There has been considerable recent interest
toward producing a scaling theory of electronic
localization in disordered systems. In particular,
Thouless and co-workers' ' have stressed that
when two pieces of material are put together the
properties of the wave function of the combined
system may be determined entirely by the con-
ductance of each subsystem. This point of view
was further developed in a recent paper by Abra-
hams, Anderson, Licciardello, and Ramakrish-
nan. These authors write down a single-param-
eter scaling equation

Bing/&lnL =P(g),

where g =G/(e'/@) is the dimensionless conduc-
tance which is a function of the linear dimension
L of the sample. It is clear that P(g) approaches
d —2 for large g. The two dimensional case is
particularly interesting. Abrahams et al. assume
that'P is monotonic and regular. It then follows
that P is always negative and scaling is toward
the weak- coupling limit. Consequently Abrahams
etal. concluded that all states are localized in
two dimensions.

The purpose of this work is to implement numer-
ically the renormalization program discussed by
Thouless and by Wegner. ' For definiteness I
study the Anderson' model on a square lattice,

where e,. is distributed randomly between —W/2
and W/2, and V is a constant hopping matrix ele-
ment between nearest neighbors (NN). Previous
numerical work has involved diagonalization of
the secular matrix for samples of increasing
sizes." Instead I start by diagonalizing 200 L
= 4 samples with noninteraeting boundary condi-
tions. The basis set is truncated from sixteen
states to M states closest to a given energy (cho-
sen to be the band center in this paper). The ei-
genvalue and the wave function on the border sites
are stored. Next I divide the 200 samples into
four groups and pick a sample at random out of

each group to put together to form an L = 8 sam-
ple. The coupling between state n ig ceIl i and
state P in the neighboring cell j can be calcu-
lated from the border wave function. These cou-
pling constants are denoted V„q'(L) with L = 4 in
this case. A 4M && 4M secular matrix can now
be set up and diagonalized. Again the basis is
truncated, this time from 4M to M states, and
their energies and wave functions on the border
of the L =8 sample are stored. One can visualize
this pictorially as "tracing" over the internal
borders. This is repeated until 200 L = 8 samples
are generated. The process is iterated with the
storage requirement increasing linearly with L.
In the calculation presented here, L goes up to
256.

It should be apparent that the present scheme
is similar in spirit to Wilson's solution of the
Kondo problem. ' The only approximation in this
scheme is the truncation of the basis set. This
should be a reasonable approximation as long as
V'(L)/W(L) «I, where W(L) is the average
spacing between energy levels of the L x L sys-
tem. The discarded energy levels (labeled 5)
can be included by perturbation theory' and con-
tribute the following correction to the secular
matrix:

6V„g' = Qa V~ z
'

Vg 8'/(E Ez). —

%e note that after a single iteration, V' is random
in sign and varies over several orders of magni-
tude. Thus for n& P, 5V„q' is a fluctuation quan-
tity and is small compared with V 8'. This is
especially true for states near the band center
because the energy denominator is at least -MW/
2. Since we are dealing with a random system
the small random correction can be thought of as
changing the system to a slightly different mem-
ber of the statistical ensemble. There is, how-
ever, one systematic correction. The diagonal
elements ~V ' are not random in sign and are
proportional to -E on the average. Physically
the discarded states produce a compression of
the states that are retained. Indeed from the
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d I.nv/d lnL=P'(v). (4)

This is obtained numerically from [Inv(2L)
—inv(L)]/ln2 for a variety of initial V/W values
and the results are shown in Fig. 1(a). We see
that for W'/V & 6, v scales toward weak coupling
and p' becomes increasingly negative whereas
for W/V 5.8 scaling is toward strong coupling.
The solid line is a guide to the eye. It crosses
the x axis at v =0.11, an indication that the trun-
cation of basis is a reasonable approximation up
to the "fixed point. " For v &0.11 scaling is to-
ward strong coupling. The following simple argu-
ment shows that P' should approach 0.5 for large
v. If we start with large V/W the wave function
must initially be extended even for samples large
compared with the mean free path X. When two
such samples are put together V~' is the sum of
the product of the wave functions on the opposite
borders. Each wave function is -L ' from the
normalization and we are summing I /X quanti-
ties that fluctuate in sign and magnitude. We thus
conclude that V~a' —VL '(L/X)'~'. Hence v = V'/
W' cc L'~' and P' = —,'. Of course, the basis trunca-
tion approximation breaks down when v becomes
large, and we have discarded data for v ~ 0.5.

A second monitor of the scaling behavior is
Thouless's sensitivity to boundary condition
(&E) .' ' This is defined as the geometric mean

numerical work I find that W does not decrease
by a factor of 4 per iteration as it should. I have
simply uniformly compressed the I eigenvalues
at the beginning of each iteration so that W'(L)
=r(L)W(L) produces the correct density of states.
I have chosen M = 6 in the data presented here
and r(L) is found to be between 0.8 and 0.9.

The scaling behavior of the system is moni-
tored by studying the quantity v(L) = ( V'(L))/
W'(L), where (V') denotes a geometric mean of
the absolute value of V„q'. The quantity v(L)
looks like a generalization of the initial V/W and
it is tempting to interpret it as the scaling vari-
able. ' However, we know that v cannot be the
only variable because by itself it is insufficient to
determine the scaling behavior of the model. This
is because there exists important correlation be-
tween V 8' and V„s ' when P and P' belong to two
different neighboring cells. The state o.'may have
large amplitude near one corner of the cell lead-
ing to large V g' and small V g

'. Failure to in-
clude this correlation leads to completely wrong
behavior of the model. However, v(L) still pro-
vides a valuable monitor of the system and it is
instructive to look at the quantity
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FIG. 1. (a) The scaling function P' vs lnv obtained
from 1nv (L) —lnv (L /2) with L up to 256 for a variety
of W/V. The solid line is a guide to the eye. (b) The
scaling function P vs lng.

of the shift in the eigenvalues if a sample is sub-
ject to periodic and then antiperiodic boundary
conditions. It is straightforward within our
scheme to calculate this quantity at each itera-
tion. Licciardello and Thouless' have argued
that g defined as (hZ)/1. 45W equals g, the con-
ductance divided by e'/K. The quantity g is a
more attractive candidate for the scaling varia-
ble because (AE) contains-the correlation across
the two opposing borders of the sample. Its scal-
ing behavior is similar to that of v when the lat-
ter scales toward weak coupling. However, if g
is related to the conductance it can only remain
constant, even if v scales toward infinity. This
is shown in Fig. 1(b). The solid line is again a
guide to the eye: It intersects the x axis at g™

=0.13 and remains zero for larger values of g™.
I do not believe that it is correct to interpret this
as a line of fixed point as in the two-dimensional
x-y model, "because other parameters like v are
scaling toward strong coupling. This behavior of
P contradicts the smooth behavior postulated by
Abrahams et al, 4 and I disagree with their con-
clusion that all states are localized in two dimen-
sions.

In Fig. 2 is shown the behavior of ling vs I for
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FIG. 2. Plots of lng vs L. The slope of the straight-
line portion gives the inverse localization length ~

which is shown in the inset vs W/V.

several W/V. In particular for W/V = 6 the values
for L =8, 16, and 32 decrease in a manner consis-
tent with that obtained by Licciardello and Thou-
less' by diagonalization of the secular matrix up
to I =34, an observation which led these authors
to speculate that all states are localized in two
dimensions. My present result indicates that the
critical W/V is between 5.8 and 6.0 ~ For W/V
& 6.0 we can see a systematic deviation from ex-
ponential decrease for larger L. An explanation
may be that the precise numerical factor relating
conductance and g provided by Licciardello and
Thouless' is based on the assumption that the dis-
tribution of the individual energy shift M upon
boundary condition change is I orentzian. I have
compiled histograms of the distribution on a log-
arithmic scale. For g - 0.13 the distribution
scales toward a fixed form upon iteration which
is not quite Lorentzian because it has a tail on
the small-~ side; nevertheless, its full width
at half height is very close to that of a Lorentzian.
When the scaling is toward weak coupling the dis-
tribution broadens continuously and develops a
long tail for small hE. It is likely that the rela-

tion between conductance and g is not a constant
ratio. If we simply take the slope of the straight
lines drawn in Fig. 2 as an inverse localization
length w we can plot K vs W/V as shown in the in-
set. There is too much uncertainty in this kind
of a plot to extract the exponent in v - [W/V- (W/
V),] ", but perhaps it is safe to say that v & 1.

In conclusion, I find that in the Anderson model
in two dimensions there exists a critical W/V of
between 5.8 and 6 that separates scaling toward
extended or localized states at the band center.
The conductance may be a good scaling variable
on the localized side. However, its scaling equa-
tion will be expected to exhibit an unusual behav-
ior (a kink in the P function) because of the added
constraint that the conductance must stay con-
stant even when the coupling matrix elements are
scaling toward infinity. While the precise behav-
ior of P is subject to numerical uncertainty the
scaling of v toward strong coupling for large g is
such a striking effect that there is little doubt of
its validity. This means that when four cells are
put together the resulting eigenfunctions are com-
plicated linear combinations of eigenfunctions of
each individual cell, surely a signature of extend-
ed states. "
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