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Analysis of the high-temperature series expansions of a continuous-spin Ising model
(i.e., a lattice A, :cp:& field theory) indicates that the strong-coupling limit of A, :y:3 is
distinct from the critical-point theory of the continuous-spin Ising model for sufficiently
Ising-like spin distributions. In four dimensions we find that the A, :cp: field theory is
trivial.

As suggested by Symanzik, ' certain model field
theories are mathematically similar to a class of
statistical mechanical systems when the real
time is replaced by imaginary time. The useful-
ness of these similarities was developed consid-
erably by Wilson. ' He pointed out that the remov-
al of the ultraviolet cutoff in field theory was
closely related to the approach to the critical
point in the statistical mechanics of critical phe-
nomena and then he adapted the machinery of the
field-theoretic renormalization group to the anal-
ysis of the critical point. ' The assumption that
an ultraviolet-cutoff field theory possesses a
unique, finite strong-coupling limit, independent
of the manner in which the cutoff is removed and
the strong-coupling limit is taken, is crucial to
this approach. If this implicit assumption holds,
then it is the thrust of the field-theoretic approach
that the critical behavior of a whole class of sys-
tems is described by that strong-coupling limit.

We find that the unique-limit hypothesis fails
in three and four dimensions. This failure was
foreshadowed by the failure of hyperscaling in the
s = 2 Ising model. 4' Our calculations are based
on a high-temperature series expansion of the
continuous-spin model defined below. Analysis
of the series using integral approximant tech-
niques shows that the renormalization-group the-

ory can be thought of as the theory of the maxi-
mum value (over all nonnegative, bare coupling
constants) of the renormalized coupling constant.
We find that in one and two dimensions this theory
describes the critical behavior of the continuous-
spin Ising model and is the strong-coupling limit
of the corresponding field theory. In three dimen-
sions the theory still describes the strong-coup-
ling limit of the field theory, but is distinct from
the critical-point theory of the continuous-spin
model for sufficiently Ising-like spin distribu-
tions. In four dimensions the X:y4: field theory
is found to be trivial (in accord with the less ex-
tensive calculations of Wilson and Kogut'), but
apparently distinct from the critical behavior of
the continuous-spin Ising model. The occurrence
of a fundamental length, however, would permit
nontrivial physical scattering. The & -expansion'
and the coupling-constant-expansion methods'
are not in the least inconsistent with our results
although the class of systems to which they are
applicable is restricted. We know of no rigorous
results which are in any way at variance with
our conclusions. In our calculations on this prob-
lem we have added several high-temperature se-
ries terms to those known for the s = 2 Ising mod-
el and these terms are listed herein.

Specifically, the model we choose to study is a
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lattice cutoff A: y'. „ field theory defined by

(9) i 9'i+ dZ=m 'f "f ?Id';e~ —-vZ —F 9" ~"~ +~'p
2 'I g p( a

+ay, (p —ecp + Sc')+ sm'(p —c)I-Qa-, rp;
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where v ~ a" is the specific volume per site, a is the lattice spacing, d is the spatial dimension, q is
the lattice coordination number, the sum over (5} is the sum over half the nearest-neighbor sites, m

is the renormalized mass, 6n~ is the mass correction, H, is the source field at site i, go is the bare
coupling constant, and IVf is a normalization constant. The bracketed terms involving C are the normal
ordered products:cp'. and:y'. , where C is the usual [cp, p'] commutator (a sum over the lattice
Green's functions) and tends to infinity as a-0 for d) 2. We may reexpress Eq. (1) in the form of the
partition function of the continuous-spin Ising model by the change of variables v; =[2di)/qKa')]"'y, . so
that Z becomes

z i& '( =fIId"v-;exp T' lcd~(a;v;„g) —g, a —z~;-*+»;rr;I
i i {~)

1„(H)= f„dxx" exp[- gox' —Ax'+Hx] i f„dx exp[ —g, x' —Ax'+ Hx]} '.

(2)

(3)

This condition determines A. as a function of g, alone and we shall only consider in this Letter functions
that are independent of the o scale. Note that for g, =0 one obtains the Gaussian model while for go=~
one obtains the s =~ Ising model.

We will be concerned with the thermodynamic quantities

m=&~, &, y=Z;(o, o;&, &'=[K;(j)'&O,o;&](2dX) ',
(4)

where M is the magnetization per spin, X is the
magnetic susceptibility, $ is the second moment
definition of the correlation length, and angular
brackets denotes the thermal average defined by
the partition function of Eq. (2). We concentrate
our study on the quantity

r) H™2 2 ~ 7

which is basically the dimensionless renormal-
ized coupling constant. Using the relation~ m~a~P

=1, we have for small g, that g =g, m" '+ O(g,').
For convenience in what follows, we will use the
mass renormalization m =1. From the point of
view of critical phenomena in the continuous-
spin Ising model, g is a diagnostic for the hyper-
scaling relations since for T-T„T&To, we have

(T T ))+~c-a~

Here T is the temperature (-1/K), T, is the crit-
ical temperature, and the critical indices y, v,
and ~ have their usual meaning: y is the suscep-
tibility index, v the correlation length index, and
~ the "gap" index. ' Rigorously it is known that
the limit of g as T- T,' is bounded, ' but g may

tend to zero. Finite g corresponds to the vanish-
ing of the exponent in Eq. (6), i.e., the hyperscal-
ing relation y+ dv —2~ =0 holds, and g-0 corre-
sponds to the failure of hyperscaling. From the
field-theoretic point of view, g-0 corresponds to
a theory that has no scattering and is, therefore,
trivial. '

Our approach to the analysis of this model is
to compute the high-temperature expansions
through tenth order of M, y, (s y/sH )», and 9
in powers of E by the method of Mortis. " The
coefficients of the series are polynomials in the
moments of the spin distribution, I„. Our series
results considerably extend the earlier work of
Camp and Van Dyke. " The production of the
series required the 6390 singly rooted, multiple-
line star graphs and the 1099 multiple-line star
graphs with exactly two odd vertices. All graphs
have no more than ten lines. These graphs were
generated from a basic list of 185 unrooted sin-
gle-line star graphs with no more than ten lines.
The number of graphs, in order of increasing
cyclotomic index (given in parentheses), withe
lines is given by the following: l = 1, (1); I =3, (0,1);
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&=4, (0, 1); 3=5, (0, 1, 1); l=6, (0, 1, 2, ),1)' l=7 (0 1,

/Y «~ «2)multi licity and second moments &~,-y„
in lane square,of these graphs on the linear cha~n, p an

triangular, simp ele cubic body-centered cu ic,
ntered cubic, hyper-simple cubic, an

h -body-centered cubic lattices.hyper- o
field mome11 spt I (0) were calculated numerical-
ly making use oak se of the recursion relation g„
=I,„„(0)/I,„(0), R„„+A/(2g, ) = (2n+ 1)/(4g, R„),

d th asymptotic analysis of Wehner and Baer-
iswyl. " The symbolic computations on a ge
data were accomplished using the ALTRAN sys-

DC 7600 computer. "
The series were analyzed using the integral ap-

proximant me oth d' that is a generalization of the
well-known Pa med6 thods. Here the coefficients

and R are deter-of the polynomials Q» P» and R„
mined by the accuracy-through-order principle
applied to

q„(x)(df/dx)+Pl. (x)f(x)+R„(x)= (0 ++4+X+2) (7)

from the series coefficients of the function f(x).
,~L 'M behaves like

,( )( — ) ~ (x) nea, r a singular point x»
ecialwhere p~ an d are regular, with some specia

S' (' =qK/2d+ O(K'), we havep
t d that series to give K(P) and substi u e

it in the others to yield X(P) and (& X/ )E

y' as a function of x =2(d+ 1)E.'/[1+2(d+1)f'
which moves the critical point at f2 = ~ to x = 1,
and generally moves all other singularities out-

proximation me o ath d allows the simultaneous com-
putation of the value of the function and its criti-

' dex. The critical index is d/2 for our case
if the hypersca. ling relation holds an is
d/2 otherwise.

Our resu s orlt for d =1 and 2 indicate that g Gp,
where Gp=gpa ' "/(10+g a' ') rises in a smoo

We do not note, nor had we ex-n1onotonic way. e
ected, any significant deviation of cri ica in expec e,

from its expected value. The
sistent wit a, o'

h th t f Marchesin" obtained directly
for] =~. T eTh d=2 curve and the validity of y-
per scaling agrees wi th expectations based on the

ork of Kadanoff. " Our results for d =3 and 4
are illustrated in Fig. 1 where we have p glotted
a,s a function 0 p orf G for the bcc and hbcc lattices

d = 3 the value of the criticawith $ =10 . or
'tIi theindex is re a ive y sl t' 2 teady and consistent with e

I
'

I I I 1 I

I
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FIG. 1. The dimensionless renorma izized coupled con-
stant, g, on the cch b (d=B) and hbcc (d=4) lattices as a

~ 2a ") for a large but fixed cutoff, $function of 60 =g&a or a
=10 . The vertical bars indicate the apparen error

The curve for d =8 in the dashed re-various regions.
l be ond the range of good convergencegion is basically eyon e

It h beenof our approximants with on y ten terms. It as een
supplied rom e cof th onvergent behavior of the g vs go
plots for smaller values of (~.

lt"" +d& —2~ =0 028corresponding Ising resu y
+0.003, over the range 80 gpaa4 ~ ~. When one
examines es the behavior of g as a function of for
fixed G» one finds a precipitous drop or very

s of $'. This behavior corresponds
to the small value of the index just quoted. T e

i ht (23.6) for d =2 in Fig. 1 agrees with-
in error wi e vth th value g*=1.420 [units differ y

of 3/16m from ours], ' and for fixed large
G the rapid descent begins from abou is s0
value. When we replot the d==1 2 and 3 curves
a.s a function o gp af lone we produce a nonpertur-
b t' lculation of &:y:& field theory. As a
goes ot zero the entire range 0& gp& co ap

cal-to the poin p=, a' t G, =O nd thus only the monotonic
l increasing port~on of these~ ~ curves is relevant
for field theory and the peak appears to
yi

rs to be the
The sha e ofs rong-t -coupling limit, as expected. p

ns of thethe pe is conak ' onsistent with the expectations o
ballan-Symanzik-equation approach. '

100- a4 "In four dimensions, over a, range -g, a' "
~ ~, we observe a relatively steady value of the

t' al ' dex which corresponds to the Ising re-
sult' of y+dv —2~ =0.30+ 0.04. Naturally g-
a,s ' —~ in this region. We have studied the be-
havior of the peak height (see Fig. 1) a,s a function
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of cutoff, and we find that its behavior is consistent with the idea that it shrinks like 1/In($') as g'-~.
One can easily deduce this behavior from the perturbation series g=go —y ln($')g, '+O(g, '). Conse-
quently, we conclude that in three and four dimensions (at least for large g, a' ') hyperscaling fails
and A:y':4 field theory is trivial.

We have added for the s = ~ Ising model the terms 5 765 546236416K'/9! + 271060330512 384K "/10!
to the series for 2dx)' (commonly referred to as tL,) on the triangular lattice. " For the (O'X/Bfp)»
Ising series we have added the terms

—298 834 57 8 77V 071 616K'/'9! —39 510 128 291 537 117 184K'o/10!

on the fcc lattice, "the term —601493660302278656K"/10! on the hyper-simple cubic, ' and the new

series

—2 —128K —9792K'/2! —886 784K'/3! —92 722 944K'/4! —11014 965 248K5/5!

—1 465 369 9V 6 832K'/6! —215 93V 597 7 84 064K'/7! —34 916 329 300 783 104K'/8!

—6 14V 843 514 432 913408K'/9! —1 170 908 043 876 450 435 07 2K'o/10!

on the hbcc.
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