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Analysis of the high-temperature series expansions of a continuous-spin Ising model
(i.e., a lattice K:qu:d field theory) indicates that the strong-coupling limit of h:(p4:3 is
distinct from the critical-point theory of the continuous-spin Ising model for sufficiently
Ising-like spin distributions. In four dimensions we find that the A:¢?: field theory is

trivial,

As suggested by Symanzik,! certain model field
theories are mathematically similar to a class of
statistical mechanical systems when the real
time is replaced by imaginary time. The useful-
ness of these similarities was developed consid-
erably by Wilson.? He pointed out that the remov-
al of the ultraviolet cutoff in field theory was
closely related to the approach to the critical
point in the statistical mechanics of critical phe-
nomena and then he adapted the machinery of the
field-theoretic renormalization group to the anal-
ysis of the critical point.® The assumption that
an ultraviolet-cutoff field theory possesses a
unique, finite strong-coupling limit, independent
of the manner in which the cutoff is removed and
the strong-coupling limit is taken, is crucial to
this approach. If this implicit assumption holds,
then it is the thrust of the field-theoretic approach
that the critical behavior of a whole class of sys-
tems is described by that strong-coupling limit,

We find that the unique-limit hypothesis fails
in three and four dimensions. This failure was
foreshadowed by the failure of hyperscaling in the
s =3 Ising model.*® Our calculations are based
on a high-temperature series expansion of the
continuous-spin model defined below. Analysis
of the series using integral approximant tech-
niques® shows that the renormalization-group the-
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ory can be thought of as the theory of the maxi-
mum value (over all nonnegative, bare coupling
constants) of the renormalized coupling constant,
We find that in one and two dimensions this theory
describes the critical behavior of the continuous-
spin Ising model and is the strong-coupling limit
of the corresponding field theory. In three dimen-
sions the theory still describes the strong-coup-
ling limit of the field theory, but is distinct from
the critical-point theory of the continuous-spin
model for sufficiently Ising-like spin distribu-
tions. In four dimensions the x:¢*: field theory
is found to be trivial (in accord with the less ex-
tensive calculations of Wilson and Kogut?®), but
apparently distinct from the critical behavior of
the continuous-spin Ising model., The occurrence
of a fundamental length, however, would permit
nontrivial physical scattering. The €-expansion?®
and the coupling-constant-expansion methods’
are not in the least inconsistent with our results
although the class of systems to which they are
applicable is restricted. We know of no rigorous
results which are in any way at variance with
our conclusions. In our calculations on this prob-
lem we have added several high-temperature se-
ries terms to those known for the s =3 Ising mod-
el and these terms are listed herein,

Specifically, the model we choose to study is a
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lattice cutoff X : ¢*:, field theory defined by
2d s~ (9 = 01.3)°
1 _ = 1—#__ 2 +2
zew [ Warem |- 1o {27 rzbndl e,
+2g,(@7* - 6Cp %+ 3C?) + dm3( *Z—C)} ZH*%J 1)

where v a’ is the specific volume per site, a is the lattice spacing, d is the spatial dimension, g is
the lattice coordination number, the sum over {8} is the sum over half the nearest-neighbor sites, m
is the renormalized mass, 0?2 is the mass correction, Hy is the source field at site T, g, is the bare
coupling constant, and M is a normalization constant. The bracketed terms involving C are the normal

ordered products :p*: and :p?*:, where C is the usual [o

",¢"] commutator (a sum over the lattice

Green’s functions) and tends to infinity as a—0 for d>2., We may reexpress Eq. (1) in the form of the
partition function of the continuous-spin Ising model by the change of variables o7 =[2dv/gK a?)] Y27 so

that Z becomes

Z=1\71‘1f_§-f11 dotexp [Z, {K{Z)}(aroi*,, ) - G,07 - Aoy?+ H{’G;’}] s 2)
j i §
L) = [T ax x" expl — §,x* - Ax? + Ax{ [Zdx expl - §,x = Ax? + Hxl}71. 3)

This condition determines A as a function of £, alone and we shall only consider in this Letter functions
that are independent of the 0 scale. Note that for g,=0 one obtains the Gaussian model while for g, =

one obtains the s =% Ising model.

We will be concerned with the thermodynamic quantities

M=(y), x=2370,077,

a_z_x_>
of?) ¢

where M is the magnetization per spin, x is the
magnetic susceptibility, £ is the second moment
definition of the correlation length, and angular
brackets denotes the thermal average defined by
the partition function of Eq. (2). We concentrate
our study on the quantity

__(z)(22x| _1
g"‘<53‘><8g2>x'x_z§'fy (5)

which is basically the dimensionless renormal-
ized coupling constant. Using the relation® »:2a2t?
=1, we have for small §, that g=g,m" *+0(g?).
For convenience in what follows, we will use the
mass renormalization m=1. From the point of
view of critical phenomena in the continuous-
spin Ising model, g is a diagnostic for the hyper-
scaling relations since for 7~T,, 7>T,, we have

g~(T =T)r+erzs, (6)

T.ET

Here T is the temperature (~1/K), T, is the crit-
ical temperature, and the critical indices y, v,
and A have their usual meaning: y is the suscep-
tibility index, v the correlation length index, and
A the “gap” index.® Rigorously it is known that
the limit of g as T—T," is bounded,® but g may

1432

£2=[ 207 (10,0 @dx) ™,

= 2 (@ W07 0T 0T = (0,070t - G000 - OEoor),

[te

end to zero., Finite g corresponds to the vanish-
ing of the exponent in Eq. (6), i.e., the hyperscal-
ing relationy + dv — 24 =0 holds, and g—0 corre-
sponds to the failure of hyperscaling. From the
field-theoretic point of view, g—0 corresponds to
a theory that has no scattering and is, therefore,
trivial,*°

Our approach to the analysis of this model is
to compute the high-temperature expansions
through tenth order of M, x, ©%x/0H%),, and £
in powers of K by the method of Wortis.'* The
coefficients of the series are polynomials in the
moments of the spin distribution, /,, Our series
results considerably extend the earlier work of
Camp and Van Dyke.?® The production of the
series required the 6390 singly rooted, multiple-
line star graphs and the 1099 multiple-line star
graphs with exactly two odd vertices., All graphs
have no more than ten lines., These graphs were
generated from a basic list of 185 unrooted sin-
gle-line star graphs with no more than ten lines,
The number of graphs, in order of increasing
cyclotomic index (given in parentheses), with !
lines is given by the following: =1, (1); /=3, (0,1);
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1=4,(0,1); =5, (0,1,1); 1=6,(0,1,2,1); I=17,(0,1,
3,3); 1=8,(0,1,4,9,2); 1=9,(0,1,6,20,14,1); 1
=10,(0,1,7,40,50,12,1)., We have counted the
free multiplicity and second moments (277,32
of these graphs on the linear chain, plane square,
triangular, simple cubic, body-centered cubic,
face-centered cubic, hyper-simple cubic, and
hyper-body-centered cubic lattices.'®* The zero-
field moments, I,(0), were calculated numerical-
ly making use of the recursion relation R,
=Ip0.5(0)/1,4(0); Ry, + A/ (25,)=(2n+1)/(45,R,),
and the asymptotic analysis of Wehner and Baer-
iswyl.** The symbolic computations on algebraic
data were accomplished using the ALTRAN sys-
tem as implemented on a CDC 7600 computer.'®

The series were analyzed using the integral ap-
proximant method® that is a generalization of the
well-known Padé methods. Here the coefficients
of the polynomials Q,, P, and Ry are deter-
mined by the accuracy-through-order principle
applied to

Qu (x)(df/dx) + PL(x)f(x) + R y(x) =O(F ¥+ ¥*2) (7)

from the series coefficients of the function f(x).
The resultant approximant [N/Z ;M| behaves like
@ ,(x)(x = x4)"7 + @, (x) near a singular point x,,
where ¢, and ¢, are regular, with some special
exceptions. Since £2=¢K/2d + O(K?), we have
reverted that series to give K (¢3) and substituted
it in the others to yield x (?) and (82x/0 %), (¢2).
We apply the integral approximants to (02x/8H2%),/
¥2 as a function of x =2(d+ 1)£2/[1+2(d + 1)2]
which moves the critical point at £2== to x =1,
and generally moves all other singularities out-
side the unit circle. The direct use of this ap-
proximation method allows the simultaneous com-
putation of the value of the function and its criti-
cal index. The critical index is d/2 for our case
if the hyperscaling relation holds and is less than
d/ 2 otherwise.

Our results for d=1 and 2 indicate that g(G,),
where G,=g,a*"%/(10+g,a*™%), rises in a smooth
monotonic way, We do not note, nor had we ex-
pected, any significant deviation of critical index
from its expected value. The d=1 curve is con-
sistent with that of Marchesin'® obtained directly
for £2=c, The d=2 curve and the validity of hy-
perscaling agrees with expectations based on the
work of Kadanoff.!” Qur results for d =3 and 4
are illustrated in Fig. 1 where we have plotted g
as a function of G, for the bcc and hbce lattices
with £2=105 For d= 3 the value of the critical
index is relatively steady and consistent with the
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FIG. 1. The dimensionless renormalized coupled con-
stant, g, on the bce (d=38) and hbce (d=4) lattices as a
function of G,=g,a*"% for a large but fixed cutoff, £°
=10% The vertical bars indicate the apparent error in
various regions. The curve for d =3 in the dashed re-
gion is basically beyond the range of good convergence
of our approximants with only ten terms. It has been
supplied from the convergent behavior of the g vs g,
plots for smaller values of £2,

corresponding Ising result®:!® y +dv — 2A =0.028
+ 0,003, over the range 80 < g,a* ? <, When one
examines the behavior of g as a function of £2 for
fixed G,, one finds a precipitous drop for very
large values of £2. This behavior corresponds
to the small value of the index just quoted. The
peak height (23.6) for d=3 in Fig, 1 agrees with-
in error with the value g* =1,420 [units differ by
a factor of 3/167 from ours],” and for fixed large
G, the rapid descent begins from about this same
value. When we replot the d=1, 2, and 3 curves
as a function of g, alone we produce a nonpertur-
bative calculation of X :¢*:, field theory. As a
goes to zero the entire range 0< g, <~ collapses
to the point G,=0, and thus only the monotonical-
ly increasing portion of these curves is relevant
for field theory and the peak appears to be the
strong-coupling limit, as expected. The shape of
the peak is consistent with the expectations of the
Callan-Symanzik—equation approach.”

In four dimensions, over a range 100 =< g, at™?
< o, we observe a relatively steady value of the
critical index which corresponds to the Ising re-
sult® of y +dv - 2A =0.30+ 0,04. Naturally g—0
as £2 - in this region. We have studied the be-
havior of the peak height (see Fig. 1) as a function
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of cutoff, and we find that its behavior is consistent with the idea that it shrinks like 1/1n(¢?) as 22—,
One can easily deduce this behavior from the perturbation series g=g,-7v In(?)g22+0(g,%). Conse-
quently, we conclude that in three and four dimensions (at least for large g a*™?) hyperscaling fails
and x:¢*:, field theory is trivial.

We have added for the s =% Ising model the terms 5765 546 236 416K°%/9! + 271060 330512 384K1%/10!

to the series for 2dx£2 (commonly referred to as y,) on the triangular lattice.'® For the (02x/9H?)g
Ising series we have added the terms

—298834578777071616K°%/9! —39510128291537 117 184K*%/10!

on the fcc lattice,?° the term — 601493 660 302 278 656K '%/10! on the hyper-simple cubic,’ and the new
series

- 2-128K — 9792K?/2! — 886 784K 3/3! — 92722 944K %/ 4! — 11 014 965 248K °/5!
- 1465369976 832K°/6! — 215 937597784 064K /7! — 34916 329 300783 104K %/ 8!

- 6147843514 432913 408K°/9! — 1170908 043 876 450 435 072K %/10!

on the hbce.
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