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Long-Range Elastic Interactions and Staging in Graphite Intercalation Compounds
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We investigate the effects of elastic coherency strains in graphite intercalation com-

pounds. The long-range interaction energies of two-dimensional islands of intercalant

are calculated. Using the domain model of Daumas and Herold, we show that these

strains drive a mixed-stage or randomly staged crystal to pure-stage ordering.

Graphite intercalation compounds are charac-
terized by an order sequence of n carbon and one
intercalant layer, with n defining the "stage" of
the material. ' Staged compounds with c-axis
periodicities of ~40 A (stage-ll FeCl, ) have re-
cently been reported. ' However, no theory for
the microscopic origin of the intercalant-interca-
lant interactions responsible for staging has as
yet been formulated. In this paper we suggest an
elastic mechanism for staging based on the do-
main model of graphite intercalation compounds
first proposed by Daumas and Harold' and re-
cently discussed by Schoppen et al.~ and by Clarke,
Caswell, and Solin. ' We calculate the interaction
energy of finite-size, tw'o-dimensional islands of
intercalant~' which interact through the coheren-
cy strains" which they introduce in the graphite
lattice. This interaction is shown to be long
ranged in that it is logarithmically dependent on
z for ao»z, where. ao is the island radius and z
is the c-axis separation of the two islands. Al-
though the completely ordered state ("pure-stage"
material) is shown to be free of these long-range
coherency strains, we show that in the mixed-
stage compounds which occur during the growth,
these strains do exist and drive a mixed or ran-
domly staged compound to pure-stage ordering.

Although some workers have suggested that
electrostatic' or charge-density wave' effects are
responsible for staging, recent experimental"'"
and theoretical" evidence indicates that the elec-
trons or holes donated to the graphite by the inter-
calant are mostly localized in the graphite layers
which bound the intercalant. On the other hand,
the elastic model discussed here requires only
short-range electronic interactions and is equally
applicable to both acceptors and donors. Such
elastic interactions have been shown to lead to
the "gas-liquid" transition of hydrogen dissolved
in metals. '" However, in contrast to the calcu-
lations of the "macroscopic modes" of hydrogen
in metals, "our calculations are for intercalant
islands whose dimensions are much smaller than
the graphite sample size. We thus neglect the

where W(x, x') is related to derivatives of the
Green's function, ' G;,(x, x'), which satisfies the
equilibrium equation"

C,,„——G~(x, x') + 5,. O(x —x') = 0.
l

(2)

In Eq. (2) C,,» is the elastic stiffness tensor,
whose values for graphite are given by Seldin. "
Since we are interested in long-range interac-
tions, we use continuum elastic theory in the lin-
ear approximation. The Green's function, G, ,(x,
x'), is the ith component of the displacement of
the elastic medium at point x due to the jth com-
ponent of a point force of strength unity, located
at x'. In our analysis, each intercalant atom is
represented by a couple of forces with zero mo-
ment' which further separate the graphite layers,
originally separated by co=3.35 A. These elastic
dipoles"*" are thus characterized by a dipole
tensor /~8=F5~ &5&,.

Figure 1(a) illustrates the nature of these di-
poles; two elementary dipoles in position A repel
each other, while those in position 8 attract. For
a highly anisotropic (C»&C») medium such as
graphite, the interaction energy can be calculated
from Eq. (1) with""'"

1
&z' 4~C (a '+~')'~'

where a, =C»/C« =9, p'=(x —x')'+(y —y')', and
z = z —z'. The interaction energy of two point di-

boundary conditions at the graphite sample sur-
face"' and calculate the elastic interactions us-
ing the infinite-medium Green s function i5. i6

In an infinite medium, the elastic interaction
between two nonoverlapping clusters of impurities
or defects with densities p,(x') and p,(x') is given
by6I 7, 13

a = —Jd'xd'x' p, (x) W(x, x' )p,(x),
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FIG. 1. Pairs of elastic dipoles (arrows) in an infi-
nite, anisotropic medium. The dipoles in configuration
A repel while those in configuration 8 attract.

(b)

poles is thus given by

a~p —2z

4mc44 (a,p'+z')'~' (4)

This interaction is attractive for p &(2/a, )'~'z and
repulsive for p &(2/a, )'~'z. Thus, the formation
of intercalant islands, lying between the same
two planes of graphite (configuration 8), results
in a lowering of the elastic energy per interealant
atom by an amount

+U1$1 0 3 0/ Ot
—Z/2

where U, =P'v/2C»c„cr is the island density
(intercalant atoms/area) and r, is a core cutoff
length, roughly equal to the average separation
of the intercalant atoms. Typical experimental
values for P for hydrogen in metals are P =3.3
eV,"so that for intercalation compounds with
chemical formula C,„I, we estimate AU;, &

=-0.13
eV per intercalant atom. " For small intercalant
atoms such as Li, similar values for P ean be
obtained from calculations of the local c-axis lat-
tice expansion. For large intercalant atoms, a
description of the local distortion is beyond the
range of linear elastic theory. However, the
long-range strain fields considered here should
still be properly described if an appropriately re-
normalized effective dipole is used.

If these islands are stacked in a periodic array
as shown in Fig. 2(a), they exhibit a net repulsive
interaction. We first consider the interaction of
two intercalant disks [e.g. , A and A' in Fig. 2(a) ].
Neglecting self-energy terms, we find that the
interaction energy of the two disks is repulsive

FIG. 2. (a) A single stack of intercalant islands in an
infinite medium. The islands, of radius ao, are stacked
in a periodic (staged} array of coherence length L,» ao,
and are separated by neo. A pair of such islands is de-
noted by A and A'. (b) A periodic array of intercalant
stacks representing the domain configuration of a pure-
stage crystal. The distance between intercalant is-
lands (6) is assumed to be much smaller than the is-
land size a&.

and is given by

H =2' ln(24ao/z), ao»z,

H =W a '~'v(a, /z)', a, «z,

(6a)

(6b)

where S"p= Upa,
' 'ocpap. Although for ap ~&z the

interaction energy per particle tends to zero as
a, goes to ~, Eq. (6a) represents a long-range
(range z -a,) interaction between the intercalant
islands. The logarithmic dependence on z is a re-
sult familiar from di=-location theory. " Because
of the long-range nature of the interaction, one
must consider carefully the interactions of a disk
with all the others in order to calculate the total
energy. For the configuration of Fig. 2(a), a
single stack in an infinite graphite medium, the
energy per intercalate atom is given by AU= U, /n.
Using the values for P and o discussed above,
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we find A, U=0. 5 eV/n
The significance of this result is that the sum

of the long-range interactions of Eq. (6) results
in an energy per particle which is independent of

ao if I,,».ao»neo. The physical origin of this
repulsive interaction is the strain induced in the
graphite layers which reduce their c-axis spacing
in between the intercalant layers, in order to be
coherent with the rest of the sample. " One can
therefore see that in a sample loaded with a pe-
riodic array of such stacks [Fig. 2(b)], these
coherency strains vanish (except for edge inter-
actions). However, in materials containing mix-
tures of stage-n- and stage-n'-type stacks there
exists a net elastic repulsive energy. The energy
per intercalant to add a single stage-n-type
stack in an otherwise pure-stage-n' crystal is
given by2o

A, V= V,n(i/n -1/n')'.

Thus, for a fixed concentration of intercalant per
layer (see below) a pure-stage configuration has
lower internal energy than a random- (over a dis-
tance z -a,) or a mixed-stage crystal. For a
random arrangement of islands, the strain ener-
gies (per intercalant) are independent of the is-
land size, while the configurational entropy (per
intercalant) of a random distribution of islands
within a layer vanishes as ao —~. Therefore the
free energy is dominated by the internal energy
which drives the system to a pure staged config-
uration.

The assumption of an equal concentration of
intercalant per graphite layer is consistent with
the proposed domain structure of an intercalation
compound. ' ' Although this [Fig. 2(b)] configura-
tion results in localized distortions at the island
edges, "these domains are stabilized by the con-
straint of equal concentration of intercalant per
layer. This constraint is imposed by the kinetics
of the intercalation process since diffusion be-
tween graphite layers is highly improbable. "

The kinetics of the intercalation process (espe-
cially its stage dependence) should also be deter-
mined by the strain interactions discussed above.
Recent experiments" indicate that during inter-
calation the crystal passes through all stages n

&no before reaching the final equilibrium stage of

no. The rate of approach to equilibrium —a pure
stage —where the coherency strains vanish, de-
pends on the elastic interactions in the mixed
phases. In this paper we have calculated the re-
pulsive elastic interactions which exist in mixed-
stage materials and have shown how these inter-

actions drive the system toward pure stages.
Further experimental measurements of domain
sizes and ordering" in both equilibrium and non-
equilibrium states, as well as a further theoreti-
cal examination of the Harold model, should
elucidate the physics of the intercalation process.
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These coherency strains can. also be relieved by the
formation of misfit dislocations resulting in anincoheg-
ent crystal. However, it seems clear that such a dis-
ruption of the strong in-plane carbon-carbon bonds
would severly hinder the observed (Befs. 8-5 and 11)
smooth progression of stages and the reversibility of

the staging process.
The energy per intercalant of these distortions tends

to zero as a(,
For a discussion of stage disorder and its depen-

dence on the kinetics of intercalation, see W. Metz
and D. Hohlwein, Carbon 18, 87 (1975).
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Pulped nuclear-quadrupole-resonance (NQR) measurements have been performed in
rhombohedral, orthorhombic, and amorphous (a-) arsenic. Measurements of T, provide
evidence of low-frequency disorder modes in a-As, while the NQR frequencies indicate
that the bonding is predominately p-like in all three materials. The asymmetric NQR
line shape of a-As indic ates that bond-argle distributions inferred from x-ray scatterixg
and continuous-random-network models do not result primarily from a distribution in
bond hydr idi Rations.

Amorphous arsenic (a-As) is of interest as a
prototype amorphous solid because it is an ele-
mental material and therefore should be easier
to understand than chemically more complex
amorphous solids. Because all of the atoms in
a-As are threefold coordinated, this amorphous
semiconductor is structurally intermediate be-
tween the tetrahedrally coordinated group-IV
amorphous films (a-Si and a-Ge) a.nd the chal-
cogenide glasses, which contain group-VI ele-
ments (S, Se, and Te) in twofold coordination.
All chalcogenide glasses possess anomalous low-
temperature thermal properties which are a mani-
festation of the disorder (tunneling) modes charac-
teristic of the amorphous phase. This behavior
has not been observed in a-As, "which has led
to the suggestion that these modes do not exist in
amorphous materials which are exclusively three-
fold coordinated. "

In this Letter we describe "As pulsed nuclear-
guadrupole-resonance (NQR) measurements on
a-As which provide the first evidence for disorder
(tunneling) modes in this prototype group-V amor-
phous solid. The NQR also provides an extreme-

ly sensitive probe of s-p hybridization of the
bonding electrons in the valence band. In addi-
tion, we present the first experimental evidence
of the second-nearest-neighbor angular correla-
tions implicit in the continuous-random-network
(CRN) models4' of a-As.

There are two crystalline forms of As: the
common semimetallic rhombohedral form (rh-As)
and the rarer semiconducting orthorombic form
(or-As). In both crystalline forms all the atoms
are threefold coordinated and form six-membered
rings stacked together in a layered configuration.
The NQR results of these two crystalline forms
provide a useful framework for the understanding
of the a-As data.

The pulsed NQR experiments were performed
using a Matec gated pulsed amplifier and receiver
in conjunction with a suitably designed matching
network; the spectrometer operated between 20
and 140 MHz with a bandwidth of -1 MHz. Vari-
able temperatures (4-300 K) were obtained with
a gas (nitrogen or helium) flow system. Typical
90'-180 pulse widths employed were approxi-
mately 10-20 @sec. All observed decays were
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