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Using Monte Carlo techniques, we evaluate the path integral for the four-dimensional
lattice gauge theory with a Z 2 gauge group. The system exhibits a first-order transition.
This is contrary to the implications of the approximate Migdal recursion relations but
consistant with mean-field-theory arguments. Our "data" agree well with a low-temper-
ature expansion and the exact duality between the high- and low-temperature phases.

Based on a non-Abelian gauge theory, the stan-
dard model of hadronic dynamics may simulta-
neously confine quarks in physical hadrons and
possess asymptotic freedom, a vanishing effec-
tive coupling at short distances. Central to an
understanding of this picture is the study of phase
transitions in lattice gauge theory.

Proposed by Wilson as a nonperturbative regu-
larization procedure, lattice gauge theory allows
a strong-coupling expansion which demonstrates
quark confinement for sufficiently large bare
coupling. ' Nevertheless, conventional weak-
coupling perturbation theory suggests a possible
electrodynamicslike nonconfining phase. Using
mean-field arguments, Balian, Drouffe, and
Itzykson have found evidence that in enough space-
time dimensions lattice gauge theories will in-
deed posses two distinct phases depending on the
coupling strength. ' It is essential for the stan-
dard model that four space-time dimensions be
insufficient for such a transition to occur with an
SU(3) gauge group.

Using renormalization-group transformations
with approximations based on bond moving,
Migdal has argued that four dimensions represent
a critical case for lattice gauge theory, just as
two dimensions are critical for phase transitions
in conventional spin systems with nearest-neigh-
bor interactions. ' Indeed, Migdal's relations are
identical for gauge theory in d dimensions and
spin systems in d/2 dimensions. Thus, the non-
existence of a phase transition in the O(3) Heisen-
berg model in two dimensions is touted as evi-
dence for the absence of a nonconfining phase in
non-Abelian gauge theories. Further, the inter-
esting and rather complicated phase structure of
the X-Y model in two dimensions has been corre-
lated with the possibility of avoiding confinement
in a lattice version of electrodynamics based on
a U(1) gauge group.

With Wilson's lattice cutoff, one can go beyond
the usual continuous Lie groups and consider the-
ories based on discrete groups. The simplest
such group is Z„ the addition of integers modulo

2. As discussed by Balian, Drouffe, and Itzykson,
this group provides a gauge-invariant version of
the Ising model. ' The Migdal recursion relation
suggests an analogous phase structure between
this model in four dimensions and the convention-
al Ising model in two dimensions. The latter
model is exactly solvable and exhibits a second-
order phase transition between a disordered and
a ferromagnetic state. The purpose of this Letter
is to present results, obtained by a Monte Carlo
simulation, which strongly indicate that the phase
transition in the four-dimensional Z, gauge the-
ory is of the first order. Thus, we find evidence
of a breakdown of the analogy between this model
and the two-dimensional Ising model.

Monte Carlo simulations have provided a useful
tool for studying statistical systems of lower di-
mensionality. ' In applying this method, one con-
structs by an iterative procedure a sequence of
configurations, Zy rX2 Z3 . , which eventually
simulates statistical equilibrium. Given any con-
figuration Z;, a new configuration Z, is obtained
from Z; by changing one of the statistical vari-
ables (spins) of the lattice. Z,.„is set equal to
Z; or to Z,. with a definite conditional probability,
P, which depends on the actions (or internal en-
ergies) of && and Z&'. This probability is chosen
so as to ensure that, when equilibrium is reached,
the states occur in the sequence with density pro-
portional to the Boltzmann factor. The procedure
is continued until all the spins of the lattice have
been tested many times and it has become clear
that equilibrium has been attained. The states
occurring- in the sequence then provide a good
sample of the correct statistical sum.

A difficulty in the application of the method to
four-dimensional systems resides in the large
number of spins one has to consider if one wants
to incorporate a reasonable number of lattice
sites in each linear dimension. To overcome this
problem we have developed a technique for proc-
essing simultaneously in a high-speed computer
all the lattice variables situated along a definite
direction, thus effectively reducing a four-dimen-
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sional lattice to a three-dimensional lattice of the
same linear size. We shall refer to this technique
as multispin coding (MSC).

While we shall present details of the technique
elsewhere, we mention here the basic underlying
idea. MSC takes advantage of the fact that the
memory locations, or words, of high-speed com-
puters are designed to store numbers with a high
degree of precision, and therefore contain large
numbers of binary digits (bits). In a computation
where each of the variables can take only the
values 0 and 1, representable by a single bit, it
is a waste to allocate one word of memory for
each spin. By MSC we denote the use of the in-
dividual bits of a single memory word to record
the values of many different spins. Typically,
one may place the spins associated with a fixed
value of x, y, z but all values of t in a single word.
Besides reducing the amount of memory storage
required, MSC allows the simultaneous execution
of computations which would otherwise be done
sequentially. For instance, suppose that in a Z,
lattice gauge the bits of the memory words A and
B code as ones and zeros the spins located on
the links emanating from sites with fixed x, y, z,
variable t, and directed along the x and y direc-
tions respectively. The "exclusive or" instruc-
tion, C = ([A and (not B)]or [(not A) and B]), a
simple and fast computer operation, will per-
form the group multiplication of all the spins in
A and B. In other words, MSC turns the comput-
er into a fast array processor.

The Z, lattice gauge theory is formulated in
terms of spin variables s;, defined over the links
of a hypercubical lattice. Each spin s,, = s, , can
be 0 or 1; i and j are indices which denote neigh-
boring lattice sites. The action describing the
interaction of these spins is

The average action per plaquette is

E=(6X) '&-S)=- ,'dZ-/dP. (4)

We have used a Monte Carlo simulation to cal-
culate E(P) for a lattice extending eight sites in
the x, y, and z directions and twenty sites in the
t direction. To minimize surface effects, we im-
posed periodic boundary conditions.

We now describe our results. Figure 1 shows
the values of E as a function of P obtained in a
Monte Carlo simulation where all the spins were
probed once and then P was varied slightly before
proceeding to another sweep of the lattice. Start-
ing from a completely ordered lattice and P= 1.2,
we reduced P to P=O in steps of 0.0006. At P=O
(infinite temperature) the simulation randomizes
the lattice. We then increased p back to p=1.2
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A phase transition is signaled by a singularity in
F or its derivatives. In particular, E should
exhibit a discontinuity at a first-order phase
transition and should be continuous (but with a,

discontinuous or singular derivative) at a second-
order one.

Some exact results for this model have been ob-
tained. In particular, the model is self-dual, "
the theory at P being related to the theory at P*
= ——,'lntanhP. The self-duality relations for E
read

E(p) = 1 —tanhp —(sinh2p) 'E(p*) .
If we assume a unique critical point P„self-
dualzty gsves

p, = —,'ln(1+ v2) =0.4407.
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where 0 represents a plaquette or elementary
square in the lattice, and the outer sum is over
all such squares. The factor of 2 is introduced
in the definition of S so as to conform with the
conventions of Ref. 4.

Working on a lattice of N sites, we define a
"free energy"
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where the partition function, Z, is given by

Z=ge

(2) FIG. 1. The average energy per plaquette as a func-
tion of P. The system was heated (+) from P =1.2 to P
=0 and then cooled (&&) back to P =1.2 in steps of 0.0006.
Points are plotted every tenth step. The solid curves
represent the low- and high-temperature expansions
given by Eq. (8) and its dual equation.
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with the same step size. In this "experiment"
statistical equilibrium is never actually reached;
rather, the lattice is heated across the transition
temperature first and then cooled back. The
clear hysteresis apparent in Fig. 1 is strongly
indicative of a first-order phase transition. This
hysteresis is due to the metastability of the or-
dered phase for P(P, and of the disordered phase
for P) P, (superheating and supercooling).

Starting with extreme initial data represented
by either a totally disordered configuration (spine
chosen randomly) or a completely ordered state
(all spins equal to zero), we perform fixed-tem-
perature simulations ranging from a few hundred
to several thousand sweeps of the lattice. The
length of these simulations was dictated by the
time it took the system to reach thermal equi-
librium at a given temperature. In Fig. 2(a) we
display a typical result of this procedure for P

&P,. The graph shows the evolution of the totally
ordered state at P= 0.425. After a rapid initial
relaxation (on the order of ten sweeps) the sys-
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tern remains metastable for a few hundred sweeps
and then abruptly decays into the (high energy)
stable phase. In contrast, starting from either
extreme initial state, two distinct phases appear
to be stable at the critical temperature, with no
sign of drift in the value of E, as is shown in
Fig. 2(b). This behavior is unique to systems
with first-order transitions and, apart from the
observed hysteresis, forms the main basis for
our conclusions.

For this system we are fortunate to know the
temperature of the transition beforehand. Be-
cause of the strong tendency to superheat and
supercool, initial conditions entirely in one
phase or the other would not permit an accurate
determination of an unknown critical temperature.
As we wish to study other groups, we need a
technique for locating P, . Therefore we have
studied initial conditions with half the lattice
randomized and the other half in a ground-state
configuration. After a rapid initial relaxation of
the two halves into stable or metastable configura-
tions, we observe a linear approach to a single
phase. This behavior is shown in Fig. 3. The
linear region is suggestive of the unstable phase
"dissolving" into the stable phase at the boundary.
The direction of this linear behavior determines
immediately on which side of the critical tempera-
ture one is working.

As a test of our methods, we have carried out
simulations on the three-dimensional Z, gauge
theory. This system is known to undergo a sec-
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FIG. 2. (a) The evolution of the totally ordered state
at P =0.425& P,. Here t represents the number of sweeps
of the lattice. A metastable phase is apparent for I;

&250, followed by a transition to the stable phase.
(b) The evolution of the totally ordered and the com-
pletely disordered states at the critical temperature.
Qme notices the coexistence of two apparently stable
phases.
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FIG. 3. Plot of average energy vs number of sweeps
in the evolution of the mixed phase for (from the low-
est curve) P =0.47, 0.46, 0.45, 0.44, 0.43, 0.42, and
0.41.
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e-48 (7)

The dual of this expression gives a high-tempera-
ture expansion with corrections of order (j3").
Equation (7) may be Pads approximated,

1 1 ~71 2

z =Be-"' "" "'" +o(x')I (8)
1 ——x — x15 225

This function and its dual from Eq. (5) are plotted

ond-order transition at P, =0.7613.' The signals
alluded to in the preceding paragraphs are absent
in this case: given any initial configuration, the
approach to equilibrium was gradual; moreover,
at P, both extreme initial configurations evolve
smoothly and are seen to merge after a short
relaxation time (on the order of 500 sweeps for a
16 x16x30 lattice). With use of the mixed phase
technique described above, F(P) is found to be
continuous at P„as expected at a second-order
transition.

Finally, we wish to remark that a low-tempera-
ture expansion can be derived for the system.
For the energy we obtain

F. =8e " [1+15x'+x'+273x'+ O(x')],

along with the "data" in Fig. 1, with excellent
agreement. Note that the expression in Eq. (8)
is singular at /=0. 36&P, . This is presumably
an estimate of the maximum temperature for
metastability of the superheated phase.
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