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other nearby poles at y =+ iy where y = n/2p pro-
vide the exact expression for the energy. " Other
pole residues vanish exponentially as A -~. De-
fining the physical mass

(18)

culating inner products of Bethe wave functions.
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we find

E„=m coshyo. , + m cosh'„n =r + 1,r + 2, (19)

E„=2m sin[-,'nw(2y —1)]coshyo. ', , n ~r. (20)

In the rest frame o.,=0, Eg. (20) gives the famil-
iar sine-Gordon doublet spectrum of Ref. 3. The
constant p, is related to the g of Ref. 1 by 2p.
=m(2g'+n)/(g+n). By a similar calculation, the
momentum is

I'„=m sinhyn, +m sinhya2, n=x+1,r+ 2,

P„=2m sin[2n7T(2y —1)]sinhyo, , n ~ r. (22)

We have described an exact diagonalization of
the massive Thirring model Hamiltonian. The
method presents attractive possibilities for fur-
ther study of the Thirring model as well as other
field theories which are proven or conjectured to
have an infinite number of conservation laws.
The explicit expressions for eigenstates, Eqs.
(2)-(4), provide a new approach to the study of
Green's functions, reducing the question to a
difficult but perhaps tractable problem of cal-
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"Our cutoff procedure encounters difficulties for p
~ &7t which will be discussed elsewhere. Here we al-
ways assume p & ~3.

Here, the limit A —~ can be related to the lattice
continuum limit discussed by Luther (Ref. 6) where
the cutoff factor e A is analogous to the elliptic modu-
lus l of the eight-vertex model and XYZ spin-chain
formalism. The precise connection between l and A

emerges from a study of the critical limit of the eight-
vertex model which will be presented elsewhere.
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The arbitraryn-point Green's functions of spontaneously broken gauge supersymmetry are
shown to be ultraviolet finite to arbitrary loop order for N~2 (where 4N is the number of Fer-
mi coordinates) when the spontaneous breaking preserves global supersymmetry.

As is well-known, supersymmetry helps to re-
duce the ultraviolet infinities inherent in rela-
tivistic quantum field theories. Thus theories
based on global supersymmetry have their ultra-
violet infinities softened so that in many models
only wave-function renormalizations are diver-
gent. ' In supergravity, the S nest&ix has been
shown to be finite up to one- and two-loop order'
(though there is some doubt as to whether higher
loops are also finite'). The global supersym-
metry of the S matrix also plays a fundamental
role in canceling the S-matrix infinities of super-

gravity. In this note we will show that the quan-
tum loops to al~ o~de~s of gauge supersymmetry
are finite when the theory possesses a spontan-
eous breaking which is globally supersymmetric. '
Unlike supergravity where on/. y S-matrix ele-
ments are finite, here the off shell Green's fun-c
tions are finite. Thus gauge supersymmetry rep-
resents the first example of a four-dimensional
relativistic quantum field theory based purely on
local gauge principles which is completely finite.

To maintain manifest global supersymmetry in-
variance, it is convenient to choose a linearized
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harmonic gauge-fixing term in the presence of a
background metric gAB(') -=(0!g„B!0). Here
g»(z) is the single gauge field of gauge super-
symmetry and zA=(x", 8"'), a=1, .. . , 4, a= 1,
.. . , N is the superspace coordinate. The anti-
commuting Fermi coordinate 0 'is labeled by a

Majorana spinor index e, and an internal-sym-
metry index a. In the following we will compress
the notation and write 8, o. =1, ... , 4N. The vac-
uum transition amplitude then reads'

Z= f dgABd7)Ad')) e

! Here I=I;„,+Ic+I~, where

I;„,(g„)= Jdz( g)'I'-[( I)Bg-BAIt +(4X 2)X]-,

IC= ——,
' fdzC"C„with C"=g B(' CB,

g(o) cB z( 1)a+b(g g{o)cB) (2b)

(2c)

where q(A. B) =))A.B+(—I)"b'"r)B.A. In the above gA(z) and ))A*(z) are the Faddeev-Popov ghost super-
fields; the subscript "; "means covariant derivative with respect to the full metric g», while "!"is
with respect to the vacuum metric g» '. R» is the contracted curvature formed from g».

It is clear that the above quantization maintains manifest global supersymmetry provided g» is a
global tensor. This implies g„B{')has the general form' g„,(') = q&„, g„~(o)= -i(81 &) ~; and g~b(o) = r)„()
+(8I"„) (8F ") {), where q= -C (C is the charge-conjugation matrix) and I""=) "F is a constant matrix
in Dirac and internal-symmetry space. Writing g»(z) = g» ' +h»(z) and expanding I in powers of h»
allows one to construct the unperturbed propagators and vertices of the theory. Our procedure of
proof is the following: %e first determine in section I the structure of the unperturbed propagators re-
quired by global supersymmetry and their asymptotic behavior. The proof of finiteness of the simplest
one-loop case of the two-point function is given in section II. (This illustrates the procedure, and al-
lows the verification of some useful lemmas. ) The analysis of finiteness is extended to the n-point
one-loop case in section III. The overall degree of divergence D of the arbitrary n-point diagram with
m loops is then shown in section IV to obey D&0. Since the subintegrations all have D&0 also (by sec-
tion III), the finiteness of the arbitrary diagram follows as a consequence of Weinberg's theorem. '

(I) Propagators The equ.—ations for the tensor field propagator

(z, z') = t(h„(z)h (z'))

and the vector ghost propagator DAB= i(gA(z) qB*(z ')) can be obtained to zeroth order from the quadratic
parts of I. In the harmonic gauge these take the simple form

and

~ABCD~s 2~~ABCD [( ) gAc gBD ( ) gBc gAD

+(Wr 1) 'g„,—(')g„(')]6(z -z') (4)

B C
( 1)ah+bc+ca [~ B

( I)ad~ B~ ]gDC(O) 6B Q(Z Z&) (5)

Before attempting to solve these equations, it is convenient to impose the constraints of global super-
symmetry invariance. Thus for the tensor propagator one has'

ABCD( a o.') [ AB(cp D) ( ) (A/CD B)]( ) )80.
Here D „=8„-i8&(8F")„is the covariant derivative for the global transformation $A ($ &= bXF "8,

), where A. is an infinitesimal constant anticommuting spinor. Equations (6) are a set of coupled
equations for the components of ~»~~ which may be solved in a fashion similar to the scalar super-
field analysis of Ref. (1). One finds in momentum space the result

LABCD(h, 8, 8 )=exp(c F"h g) Q I A c ' (h, &c )P .)($ ),
5 + lb a ~ 0 ~ 4
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where e~ =—8~ —8", 2( ~ -=8~+ 8, and P(, ) is a
determined polynomial of ith degree and indepen-
dent of p" and cu . Equation (7) contains the full
constraint of global supersymmetry on D»c~.
A similar form holds for ~A except the P(,.&

are
at most quadratic in $ .

One may now insert Eq. (7) into Eq. (6) and ob-
tain equations for the I'»cD ' which may be
solved in a power series in m . The asymptotic
form for large Euclidean p" is easily obtained
for each power of + and found to be"

4E
(i) - g ~ g, -(2+4/-n)(~)n

ABC L) (ny
n=0

(6)

where (&u)" is short for u&~~ ~ ~ ~ (d~n. Thus the
higher the power in w, the more slowly the prop-
agator vanishes in p". A similar asymptotic form
holds for the ghost propagator 6A .

(II) One lo-op, tzvo p-oint function .—The interac-
tion Lagrangian generated from Eqs. (2) by the
translation g AB ~AB + ~AB contains arbitrary
powers of hAB but each term contains precisely
two superspace derivatives. The structure of the
n-point momentum-space vertices is therefore
the following: V=V, + V, 8~+ Vo~ 8&, where V,
(a=0, 1, 2) are polynomials in momenta of order
a. They may additionally depend on the 8 vari-
ables of the lines into the vertex and 8 is short
for the Fermi derivative of any of these 8 . The
key element of the vertices is that the sum of tke
number of momentum factors plus 8 factors is
less than or equal to 2. This will be seen to ef-
fectively produce at most two momentum factors
in each vertex.

Only the three- and four-point vertices enter
into the one-loop, two-point integrals. The po-
larization operator has the form,

P„,(p; 6", 8 ')= fd'k Vs&;,s)(p, k; 6)a (p+k; 8, 6')V~~,&(p, k; 8)b, „(k; 8, 6')

We look first at the tadpole diagram involving

V(4&. The part of V(4& quadratic in k", i.e., V„
has no 8 derivatives. Since 6(6 —6') enforces
8 = 6 here, only the n=0 term of Eq. (6) sur-
vives in h. Thus the degree of divergence from
the V, part of V(,) is 4+ 2- (2+ 4K) and so the inte-
gral converges provided that'

X~ 2. (10)

The V, ~ part of V«& contains at most one power
of k", but B~D allows n= 1 in Eq. (6) which effec-
tively supplies another power of k", leading again
to Eq. (10). All three parts of the vertex thus
produces an O(k') factor. This result is easily
seen to be quite general and we will use it in all
our following considerations.

Consider next the first integral of Eq. (9), which
may be viewed as a function of z and $". The
most divergent part comes from the (v)'" coeffi-
cient. First, ignoring the exponential factor of
Eq. (7) in g the degree of divergence is 4+ 2(2)
—(2+ 4%-n) —(2+ 41V —m), where n+ m ~ 4K.
Hence again Eq. (10) is a sufficient condition for
convergence. The exponential of Eq. (7), when
expanded, supplies one power of k" for each pow-
er of ~ . Since the latter, as a consequence of
Eq. (6), produces an effective I/k factor, the ex-
ponential of Eq. (7) does not affect the conver-
gence of the integral. Similarly, the polynomial
factors P(,.)(g) of Eq. (7) do not affect convergence
as they are independent of ~ .

fd'k V,F,(p, +k, (d„)V,F,(p, +k, &u„)

~ ~ V„F„(P„+k,~~), (ll)

where P, are functions of the external momenta
and u&,,~=6,. —6, [In Eq. (11) we have com-
pressed all superspace tensor indices into a sin-
gle subscript. ] Note that

CO~2+ Q)2~+. . . + G)~ = 9 (12)

i.e., the v,.&
are not all independent since global

supersymmetry requires that the I functions in
Eq. (7) depend only on the differences of 8 coor-
dinates. We now expand each F, in Eq. (11)in.
powers of v,.i. From Eq. (8), the degree of di-

! III. One loop, n p-oint func-tion. We gene—ralize
now to the case of a single loop containing n ver-
tex points labeled z„.. . , z„with z,."= (x,.",8,. ).
At each vertex an arbitrary number of external
lines may be attached (since arbitrary-point ver-
tices exist in the theory). The previous discus-
sion has shown the following: (i) Each vertex ef-
fectively supplies a factor of O(k'). (ii) The ex-
ponential and polynomial P(,.)($) do not change the
convergence properties. (iii) Ghost propagators
behave as tensor propagators as far as conver-
gence questions are concerned. Thus the con-
vergence of the n-point diagram is governed by
the integral
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vergence of the coefficient of (to»)"»(&u»)"». . . is

u = 4+ n(2) —n(2+ 4X)+Qn, , (13)

—(n+p)(2+ n~)+Qn, .i+Qn„', (14)
where n, =4 is the number of Bose dimensions
and n&

——4N is the number of Fermi dimensions.
Since all the internal Fermi coordinates are in-
tegrated over, only the terms with n„'=4N sur-
vive, while gn,.

&
«(n - 1)4N as before One h.as

then

D ~m(n, -nq)- 2(m —1) (15)
since p —q = s = m —1. Thus D( 0 for ¹ 2, and
since the subintegrations have been seen to be
convergent, the general m-loop graph is finite
for R» 2, by Weinberg's theorem. '

V. A. dditional corn~enf+. —The gauge invariance
of gauge supersymmetry is sufficiently powerful
to uniquely determine all the dynamics of the the-
ory. (Only the numerical value of the constant A

is undetermined. ) It is remarkable that the two

Equation (12) implies that there are only n-1 in-
dependent to, , coordinates and so Qn, , ((n —1)
x(4N) as each Fermi coordinate cannot appear
with a power greater than 4N. Hence D «4- 4N
and Etl. (10) again guarantees convergence.

DI. m-loop, n-point function. —We calculate
next the overall degree of divergence of the arbi-
trary n-loop, m-point function. We may build up
the arbitrary diagram by inserting internal lines
into the one-loop, n-point function so that there
are a total of p additional lines in the diagram and
s= m —1 more loops formed. This will in general
give rise to q new vertices (at points s, ', . . . , z, ',
say) and hence q additional independent tu, &Fe.rmi
variables (e.g. , ~„'—= 8, -8„, r=1, . . . , q). Mo-
mentum conservation at each of the new vertices
implies s =p —q. Since the theory allows v-point
elementary vertices, where z =3, 4, . . . , q can
range from 0 to 2s (and hence p = s, s+ 1, . .. , 3s).
Thus the case q =0 corresponds to all the new
lines ending on previously existing vertices (pro-
moting each such v-point vertex to a higher ver-
tex); q =1 corresponds to a new three- or higher-
point vertex at the point ~, '; q = 2s corresponds
to 2k new three-point vertices being inserted.
We can now calculate the overall divergence of
the diagram arising from the coefficient of
(~ )"12(~ )n23 ~ ~ ~ ( ) nl(to t)nl (~ l)n2 0 ~ O(to l)SF,
Since each vertex is O(k') one has, as in Etl. (13),

D = (s+ l)n, + (n+ q)(2)

conditions of local gauge invariance and super-
symmetry in gauge supersymmetry combine to
produce a completely finite theory with no further
ad hoc assumptions. Further, since the theory
possesses no linear divergences for N) 2, one
expects that it will be anomaly free.

An important remaining question in gauge super-
symmetry is whether the theory possesses ghosts.
It is now possible, for the first time, to examine
this problem since loop corrections to the kinetic
energy matrix can be calculated and are finite
One hopeful point in this connection is that usually
one type of ghost pathology manifests itself by pro-
ducing negative energy states when quantized with
conventional positive-norm states. However, as
is well-known, a theory possessing global super-
symmetry (as is the case in the discussions here)
must have only positive energy states.
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