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We study floctuations in a fluid with a stationary, linear shear. We find that the pair-
correlation function gains a long-ranged part. The Brillouin components of scattered
light are enhanced or reduced compared to equilibrium depending on the scattering angle.
The Landau-Placzek ratio no longer holds and the total scattering intensity is k depen-
dent. We suggest a simple light-scattering experiment to test our predictions. The new

features are explained by the differential attenuation of sound modes.

Fluctuations in fluids with nonuniform velocity
fields are of great current interest, in the con-
text of the hierarchy of hydrodynamic instabili-
ties' ' and the transition to turbulence. ' In this
Letter we report some results of a theoretical
investigation of hydrodynamic fluctuations in sys-
tems with stable nonuniform velocity field, and
we argue that the existence of a dissipative mo-
mentum flux is accompanied by the appearance
of a long-ranged part in the pair-correlation

function as well as interesting and measurable
new effects in the spectrum of light scattering.

The method of calculating the correlation func-
tions in the presence of a velocity field is based
on our statistical-mechanical theory of nonequi-
librium stationary states. The theory was pre-
sented in great detail in Refs. 4-6 and a short-
ened version was outlined in a previous Letter. '
We do not repeat the derivations here, and sim-
ply remind the reader that the main result of the
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formal theory is that when the macroscopic gradients are sufficiently small we have an expression for
the nonequilibrium ensemble average of any dynamical variable B (r, t)4:

(B(rit))NE =(B(r))g"' —fo d7(B'(r, 7)I&)r,
' *v[pc'(r, t)],

where the symbol ()L ' denotes an average over a "local equilibrium" distribution function

fG c (X) exp[PC'(r, t)+ fA(r, )d'x, ]
Q~fdXfG c (X) exp[PC'(r, t)~ JA(r, )d'r, ] '

where fG.c. is the grand canonical distribution function, X is the phase-space point, and in a simple
fluid the set A(r, t) is composed of the densities of number energy and momentum. The set P4 is re-
lated to the local chemical potential, temperature, and velocity, respectively. The set I~ is composed
of the microscopic dissipative fluxes, integrated over the volume: Iz. —= jd xI(r). Here the asterisk de-
notes an inner product in the space of such sets, but now with the spatial integration explicitly written
out (see notation in Ref. 7).

In a simple fluid with a nonuniform velocity field as the only dissipative mechanism (i.e., the system
is isothermal) the only contribution to Eq. (1) comes from the dissipative momentum flux I» which is
contracted with &[Pv(r)], where v(r) is the local velocity field and P = 1/k BT,„. Equation (1) can be
used, after simple manipulations, to compute the static correlation functions in k space in a nonequi-
librium stationary state (NESS) with velocity gradients:

&AT(t)A-k(t))NE(r) = &A kA-k)L" (r) —f. «&AT, (T)A T(~) I, ,&i"'Y~):~[&v(r)1. (3)

We have shown' that the dominant part of the second term on the right-hand side (RHS) of Eq. (3) can
be obtained by writing

AT, (&)
= exp(Mgt)AT, (0),

where MT, is the matrix that governs the linearized macroscopic relaxation to the steady state. For
NESS that are not too far from equilibrium we can identify Mk with the matrix that governs the relaxa-
tion to equilibrium. For simplicity, we can compute the quantities appearing in Eq. (3) in the rest
frame of a fluid element, and at the end transform to the laboratory frame. Thus, denoting the second
term on the RHS of Eq. (3) by W~$~ r) we have

W~gj r) =-- f, d7' exp(M&~)(AkA kI~, )(~) exp(M&t~):&[Pv(r)],

where now the average is in an equilibrium system with uniform thermodynamic parameters that are
the same as the actual ones at the point r. Since I~ is even under time reversal, the only nonvanishing
entries of W~(%~ r) are the NN, EN, NE, EE, and PP ones. Since we are interested here in the modifi-
cations of the light-scattering spectrum, we do not evaluate (PTP q)NE or (EkE T)NE which will be giv-
en elsewhere. ' Remembering that the light-scattering spectrum is determined' by (N&(t)N T)NE, which
ls

(5)

(vb)

where p, h, T, m, co, and I", are the density, the enthalpy density, the temperature, the molecular
mass, the speed of sound, and the attenuation of sound, respectively, all computed at the point r. k

(N g(t )N g ) NE = [exp(Mq t) ] ~~ (A gN g )NF (6)

we see that we have to compute only the entries NN and EN of W~(k~ r).
The matrix exp(M-„t) was computed in Ref. 5. With use of symmetry arguments and the fact that V

~ v(r) =0 in the NESS it can be shown that only (P~"P )*I&"")contributes appreciably to the matrix
multiplication in Eq. (5). Here Pk" is the longitudinal component of the momentum'0 (i.e., x is chosen
to point in the k direction). Performing the calculation involved in Eq. (5), which contain only integrals
over thermodynamic and hydrodynamic quantities, we find (details are given elsewhere)'

A A

(7a)
2 mco'I", k

A P

2 rnco'I. ; 4'
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is a unit vector in the direction of k.
i ' ' ' -ran edThe first interesting conclusion is a e s ith t th tatic density Rutocorrelation function gains a long-range

part. The 1/k' dependence appearing in Eqs. (7) is equivalent to a 1/r decay in physical space. Here
we caution the reader that e eory is onth th ly valid for systems in which the shear remains constant
over a length scale several times arger an c,l t I than c /21' k' the characteristic attenuation length of sound

the limit k — is notk Thus 1/k' is not to be interpreted as a true divergence, since the limit k- is nowith wave vector . us is n

accessible within the presen eory. owet th However the 1/k' dependence means that for distances
not too large the pair-correlation function has a part that decays like 1/r in space, in contrast to equi-
librium systems far rom cri ica poinf t' 1

' ts where the pair-correlation function is extremely short ranged.
an instabilit .We stress that the present in ing is associt f d associated with a stable NESS and is not related to any ins a i i y.

Secondly, we can combine Eqs, , nE (6) (8) and (7) to find the density time autocorrelation function.
Performing a Fourier transformation according to

Sg (r)-=f „dt(NT, (t)N T, )NE(r)e

r9 ~ 10,we find the following result for the dynamic structure facto

c *+(I'~k)' mc ' \(~-kc)*+ (I' o')' (ra +kc )'+(r,0)*)I
'

0

where

(- — " kk""'
21",k '

c(&

Here t-"~, C„, and I'~ are the specific heats at
constant pressure and volume and the heat atten-
uation coefficient, respectively. We remind the
reader that Eq. (8) is calculated in the rest frame.
It can be shown that the transformation to the lab-
oratory frame involves only a Doppler shift [i.e. ,
n)-u)+% v(r) in all the frequencies].

As is well known, the spectrum of scattered
light is proportional to Sg . Two facts concern-
ing Eq. (8) are immediately obvious; first, the
total scattering intensity has become % dependent.
Secondly, the central peak is not affected. Thus
the Landau-Placzek ratio' " no longer holds.
The ratio between the intensities of the BriOouin
and Rayleigh components is not purely thermody-
namic but is now k dependent.

In Fig. 1 we depict Q for a fluid subject to a
linear shear with the velocity in the x direction
and the gradient of velocity in they direction.
The two panels are associated with two% vectors,

and% ' . The following relations are chosen:

i (as all other static correlation functions) in the k
-0 limit, which yields a purely thermodynamic
result. Once the pair correlation gains a long-
ranged part, the computation of the static correla-
tion cannot be done in the 4 =0 limit and the Lan-
dau-Placzek ratio should not hold. "

A simple light-scattering experiment can be
suggested to test our predictions. One can place
a fluid within bvo coaxial cylinders and then ro-
tate the outer one (to avoid instability). In this
way an almost linear shear can be produced. De-
noting the velocity direction as x and its gradient
asy, one can send a laser beam in the & direc-
tion. The spectra depicted in Fig. 1 can be ob-
tained by observing two scattered beams that
share a small polar angle but differ in their
azimuthal angles (in the v-&v plane) by 90'. The
k vectors can be then chosen according to Eq.
(10).

The experimental setup must obey several con-

20-

(10)

—16—

3I 2—

8— kCo kCo

2k Is

The fact that the Landau-Placzek ratio does not
hold is related to the long-ranged part in the pair-
correlation function. In equilibrium, the static
correlations of the sound and heat modes, respec-
tively, which determine the intensities of the
Brillouin and Hayleigh lines, can be computed
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FIG. l. A schematic spectrum of light scattered
from a fluid with a linear shear. In panel I, kk:(Vv/co
is positive, whereas in panel II it'is negative. The
dashed line marks the height of the Brillouin compo-
nents in the same system at equilibrium. Notice that
the Landau-Placzek ratio no longer holds.
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straints in order to allow a measurable effect
[i.e., e(r)-10 ']. Firstly, the shear flow must
remain laminar. With the suggested geometry,
laminar flow can be maintained up to Reynolds
numbers of O(10'-10'). Secondly, the difference
between the inner and outer radii, l, must be
several times larger than c,/2k'I', (see the last
paragraph for an intuitive reason for this con-
straint). Finally, k must be sufficiently small
to allow a detectable &(r).

Choosing & -4(C,/2k'I', ) we find a relationship
between the Reynolds number R =v,l/v and the
scattering vector k,

k =[a/4I'e(r)]"'

and the kinematic viscosity,

v-I', -8coe(r)l/R .
A good compromise between the above-mentioned
constraints can be found if the fluid is sufficient-
ly viscous" [I',-O(1-10 cma/sec) and k-O(500
cm ')]. This means scattering angles 8-0(0.5')
which are accessible with modern light-scatter-
ing techniques.

To conclude this Letter we present a nonrigor-
ous, intuitive argument that may help to explain
the novel features reported above. The height
of the Brillouin components of Q can be identi-
fied with the intensity of sound waves having wave
vector%. These sound waves propagate over rel-
atively large distances in the fluid. In fact, their
characteristic attenuation length is c,/21', k',
which is precisely the coefficient in &(r) [Eq. (9)].
For light-scattering wave vectors this attenua-
tion length is of the order of 1 cm and thus the
sound waves contributing to the Brillouin part of
the spectrum are able to "see" the macroscopic
velocity gradient. Consider now the way in which
sound propagation is changed by the presence of
a velocity gradient. If we choose% to lie on the
x axis, then we are interested only in sound prop-
agation along the x axis. Further, if we choose
our frame of reference so that the scattering
point is at rest, then there are two possible pro-
jections of the surrounding velocity field onto the
x axis as shown in Figs. 2(a) and 2(b). In Fig.
2(a), Vv:xx is positive and fluid moves away from
the scattering point along the x axis, whereas in
Fig. 2(b), Vv:xx is negative and fluid moves to-
ward the scattering point along the x axis. We
see that, if V'v:xx is positive, the velocity field

FIG. 2. Two possible projections of the velocity
field onto the x axis. (a) xx:Vv& 0; (b) xx:V'v(0.

works against incoming sound waves; the effec-
tive distance over which they propagate to reach
the scattering point is increased and they arrive
more strongly attenuated. Thus both Brillouin
peaks are diminished from their equilibrium
height. On the other hand, if V'v:xx is negative,
the reverse holds and the Brillouin peaks are in-
creased.
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