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A model inverse dielectric matrix is used to calculate the electronic response to im-
purity potentials in silicon. %e show that local-field effects are strong on the scale of
interatomic distances and that they give rise to relevant quantitative effects on the bind-

ing energies and wave functions of both deep and shallow impurities.

The screening of shallow impurities in semi-
conductors' has generally been described either
by a dielectric constant cp or by a dielectric
function e(q), ' thus neglecting local-field (LF)
effects due to the off-diagonal elements' of the
dielectric response matrix (DM).

The off-diagonal elements of the DM in semi-
conductors, however, are not negligible. " Only
if they are taken into account can the linear RPA
screening be an excellent approximation to the
full self-consistent response. '

In the present work, we investigate for the
first time the importance of LF's in the impurity
problem. For this purpose we propose a simple
model which yields accurate results for the in-
verse static DM at all q vectors. We then apply
the model to the screening of a pointlike impurity
in silicon, and show how LF's account for the
bond-charge polariza, tion and for the site depen-
dence of the screening and discuss their effects
on the impurity binding energies and wave func-
tions. We show that LF effects are strong on the
scale of interatomic distances and thus are im-
portant in the description of deep impurity cen-

ters. The short-range details of the impurity
potential are also important' for the ground state
of shallow impurities, as shown experimentally
by the chemical shifts, so that LF's cannot in
principle be ignored even in this case.

The inverse DM a,t all q vectors is required in
order to screen nonperiodic perturbations as the
Coulomb potential considered here. In this case
a model DM has to be used since accurate calcu-
lations need a great computational effort and
have been performed, within RPA, in the q-0
limit only. " A simple model without any adjust-
able parameter has been proposed by Johnson, '
but we have found that it agrees poorly with the
q -0 DM calculated in Ref. 6 for silicon. On the
other hand, the Sinha factorization Ansatz in its
simplest form' does not provide a particularly
convenient approximation for convalent materials,
since it is strictly valid for tightly bound elec-
trons only. We found, however, that a functional
form similar to the Johnson model gives a fair
interpolation of the known q-0 results in silicon
with two adjustable parameters only. Our model
is

t

~(q+ G, q+ G') =f, (q+ G) ~GO +f.„(q+G, q+ G')(1 —CGA, )

A - -, (q+G) ~ (q+G')
[1+a~( +c) ~ ( +c')~j' ""

~

c('
Since the off-diagonal elements of the DM in silicon are small with respect to the diagonal ones, an
analytical expression for the inverse DM can be obtained by first-order perturbation theory
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We fit f, to the diagonal dielectric function calculated by Walter and Cohen, 'o and the constants A and
B to the off-diagonal elements of the q -0 inverse DM calculated from the same pseudopotential band
structure' (for Si we find A= 115.86 a.u. and 8=1.07 a..u. ), p„(G) being the corresponding pseudocharge
density. Our model, as does that of Johnson, satisfies the f-sum rules. ' In the limit q+G, q+G') re-
produces the values calculated in Ref 6 with an accuracy of better than 2(Po for the most important DM
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elements. We remark that the accuracy of both
the band structure and the RPA is expected to be
of the same order. "'

We study the site dependence of the screening
by considering a point-charge (PC) potential in

the substitution site S-=(0, 0, 0) and in the inter-
stitial empty tetrahedral site I= —,

' a(-1, I, 1). With
the choice of the origin at the impurity site, the
screened potential corresponding to V,„,= 4&Ze'/
Q' 1S
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where e ' is given by Eq. (3) and the site depen-
dence is contained in the charge density factor
p„(G). By Fourier inverting Eq. (4) we calculate
the screened potential V(r), and through Poisson's
equation we determine the induced charge density

p;.d(~)
As the point group of the crystal both in S and I

cases is T„we develop V(r) and p;~(r) in cubic
harmonics K»(8, y) of I; symmetry, i,e. ,
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where V~(r) is the potential screened by the diag-
onal part of e ' alone, and the terms U, (~, 8, cp)

=— V,(r)K»(8, y) are due to the local fields in the
crystal. We have numerically verified that the
contribution of the terms with / & 4 in the series
(5) is negligibly small. The term l = 0 is the LF
spherical correction to V„so that V, = Vd+ Vp is
the spherical average of V(r). The cubic terms
l = 3, 4 determine the tetrahedral character of
V(r).

LF effects in the screened PC potential were
calculated by including off-diagonal terms up to
(a/2~)(G —G') =(331) in the inverse DM. In Figs.
1(a) and 1(b) we show the ratio V, /V~ and V/V,
along the (111)and the (117 ) directions for the
substitutional and the interstitial cases, respec-
tively. In both cases the oscillations of V, /Vd
are as large as 0.3 and have a range of one bond
length approximately but opposite phases. A
cross section of the off-diagonal contribution to
p;„z (i.e. , p, + p, +p4) in the (1 I 0) plane is shown
in Figs. 2(a) and 2(b) for the cases Sand I. Fig-
ure 2(a) shows the presence of localized dipoles
on the four bonds departing from the S site,
whereas in Fig. 2(b) the polarization charge ap-
pears only at distances of approximately one
bond length from the impurity, i.e. , in corre-
spondence with the first-neighboring bonds.

0.6

04- hend Length

4 r (a.u. )
6

FIG. 1. Deviations of the screened potential V and

of the spherical screened potential V, from the diagon-
al screened potential V~. {a) Substitutional impurity;
(b) interstitial impurity.

These results are in agreement with the picture
that the polarizable charge in silicon is localized
on the bonds. "

In order to qbtain an understanding of the in-
fluence of LF on the energies and wave functions
of impurities, we consider a spherical model
where the bound particle is characterized by a
scalar mass m and the fully screened potential
V(r) is replaced by its spherical average V, (r).

Our results for the binding energy E~ of the
single- and the double-charged impurities are
shown in Fig. 3. Within this simplified model
the donor (for Si we assume m, -0.2) binding en-
ergy for both Z=1 and Z=2 is unaffected by LF
corrections, whereas using the heavy-hole mass
(m„-0.5), F~ is reduced by -10/0 for the Z = 1

and by -50/o for the Z = 2 acceptor. Assuming
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FIG. 3. Ground-state binding energy vs bound-parti-
cle mass for (a) Z =1 and (b) Z =2. Traces include S
for substituttional, I for interstitital, D for diagonal
approximation, and II for hydrogenic model VH(&) =Z/
E' (jV.

FIG. 2. Nondiagonal contribution to the polarization-
charge p;„d on the (110) plane. The units are electrons/
cell. Shaded areas indicate positive charge. (a) Sub-
shtuttional impurity; (b) interstitial impurity.

that in a realistic acceptor calculation these cor-
rections would roughly be of the same magnitude,
the correction for Z = 1 should improve the agree-
ment of the PC binding energy, E~ =80 meV, "
with the experimental data for the isocoric im-
purity Al (Fs=68 meV). In the case of double
acceptors, our results show the relevance of LF
effects for deep impurities, though the present
effective-mass model has only indicative value.
The influence of LF on the impurity wave func-
tions is even lar ger than that on the binding en-
ergies as shown for instance by the site depen-
dence of the ground-state electron density at the
impurity site for donors (~ C(0) ( z'/~ C(0) ~s'=1.17
for Z = 1, and 2.52 for Z = 2).

The spherical model discussed so far systemat-
ically underestimates donor binding energies.
For the Z = 1 and the Z = 2 cases, it gives F.»
= 21 meV and E» = 101 meV, respectively, as
compared to the experimental values E» = 45.5

meV and E»-—613.6 meV for the isocoric P and

S' impurities. ' In a realistic theory, band-struc-
ture effects and intervalley mixing, including
umklapp contributions, ' should be taken into ac-
count. In this case the short-range components
of the impurity potential, and thus also LF ef-
fects, become more important. An accurate
variational one-band multivalley calculation using
the PC potential gives E~= 55 meV for the sub-
stitutional donor when only umklapp effects are
included, whereas K~=45 meV is obtained when
both umklapp and LF contributions are taken into
account due to the -20% reduction of the inter-
valley matrix elements produced by LF's. In
view of the uncertainties in the DM, in the band
structure, and in the variational calculation, this
result does not mean perfect agreement between
theory and experiment, but rather it should be
considered as a test of the quantitative impor-
tance of LF's even in the shallow-donor case.
The details of this calculation will be reported
elsewhere. " The reduction of E~ would be even
more pronounced for double donors. In this case
pantelides and Sah, "neglecting LF's, found E~
=1085 meV for the PC model, i.e. , a value signif-
icantly larger than the experimental value for the
isocoric impurity. In the case of the interstitial
donor the umklapp contributions give rise to a
deep level" in agreement with experiment. " LF's
significantly enhance this effect, "by increasing
the intervalley matrix elements up to 40%, as a
consequence of the less-efficient screening at
small distances for the interstitial site.

In conclusion, the above discussion points out
that the relevance of LF's goes along with that of
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the short-range details of the impurity potential.
A more refined theory should contain both a better
impurity potential' and a better description of the
screening. The authors wish to thank Dr. M.
Altarelli, Dr. A. Baldereschi, Dr. K. Maschke,
and Dr. E. Tosatti for helpful discussions. One
of us (A.S.) is partially supported by Landis and
Gyr AG, Zug, Switzerland.
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We study floctuations in a fluid with a stationary, linear shear. We find that the pair-
correlation function gains a long-ranged part. The Brillouin components of scattered
light are enhanced or reduced compared to equilibrium depending on the scattering angle.
The Landau-Placzek ratio no longer holds and the total scattering intensity is k depen-
dent. We suggest a simple light-scattering experiment to test our predictions. The new

features are explained by the differential attenuation of sound modes.

Fluctuations in fluids with nonuniform velocity
fields are of great current interest, in the con-
text of the hierarchy of hydrodynamic instabili-
ties' ' and the transition to turbulence. ' In this
Letter we report some results of a theoretical
investigation of hydrodynamic fluctuations in sys-
tems with stable nonuniform velocity field, and
we argue that the existence of a dissipative mo-
mentum flux is accompanied by the appearance
of a long-ranged part in the pair-correlation

function as well as interesting and measurable
new effects in the spectrum of light scattering.

The method of calculating the correlation func-
tions in the presence of a velocity field is based
on our statistical-mechanical theory of nonequi-
librium stationary states. The theory was pre-
sented in great detail in Refs. 4-6 and a short-
ened version was outlined in a previous Letter. '
We do not repeat the derivations here, and sim-
ply remind the reader that the main result of the
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