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The ratio R~( H) of the D- and 8-state asymptotic normalizations of the neutron-deuteron
tail of the triton wave function is calculated from a solution of the Faddeev equations with
the Beid soft-core potential. We find R2( H) = —0.24 fm . Both the phase and magnitude
of the calculated ratio are in agreement with the experimental value determined from the
recent measurements of tensor analyzing powers for (d, t) reactions. An estimate of B2
for 3He with a Coulomb correction gives R2( He) =- 0.24 fm .

In a recent paper, ' Knutson et 0/. reported the
measurements of the tensor analyzing powers
for (d, t) reactions on "'Sn and "'Pb and showed
that their results are sensitive to the D-state
components of the triton wave functions. In the
analysis of their data, they used the distorted-
wave Born approximation (DWBA) with a param-
eter D, which determines the effects due to the
D-state part of the overlap between the deuteron
and triton bound-state wave functions on the three
tensor analyzing powers (T», T», and T»). From
the best fit to the (d, t) measurements they ob-
tained D,('H-nd) = —0.24 fm'. Their theoretical
estimate of D, based on the first-order perturba-
tion theory with 8.8% D-state probability for the
triton wave function gives D, ('H-nd) =' —0.20 fm'.
Most recently, Roman et al.' obtained a D, ('He-
pd) of —0.20 to —0.30 fm' from similar measure-
ment of (d, 'He) reaction on "Al. The best fit to
their data gives D, ('He-pd) = —0.22 fm'.

In this Letter, we present our calculation of
the triton D-state asymptotic normalization con-
stant, C, (which is related to the D, of Knutson
et al. '), using the trinucleon wave function' ob-
tained from a solution of the Faddeev equations
with the Reid soft-core potential. 4 To our know-
ledge, this is the first exact nonperturbative cal-
culation of the normalization constant C, of the
neutron-deuteron tail of the triton D-state wave
function which involves the realistic nuclear
forces and D-state components.

The 'H-nd and 'He-pd coupling constants or
asymptotic normalizations of the 'H and 'He wave
functions are basic parameters of the trinucleon
bound-state properties and should have compara-
ble status as the binding energies and charge ra-

I

dii. ' The previous theoretical prediction with
the Reid soft-core potential for the S-state 'H-nd
asymptotic normalization is IC, ('H-nd) I'= 2.8,'
which is in reasonable agreement with the values
extracted from various experimental data, C,'
= 2.2-3 4 ''

In calculating the 'H-ed coupling constant C„
we use the nonrelativistic wave functions' calcu-
lated by solving the Faddeev equations in momen-
tum space using the Reid soft-core potential, 4

effective in the 'S, and 'S,-'D, partial-wave states.
The completely antisymmetric trinucleon bound-
state wave function 4' is expanded in terms of the
&-8 basis state, 'p„(p, q) [i.e. , 4 =Q y (p, q)],
which is defined to be an eigenstate of the opera-
tors p', j', L"', S'=(L+1)', P=(s, +s,)', s,',

relative orbital angular momentum of the (2, 3)
pair; l is the orbital angular momentum of nu-
cleon1in the c.m. system; s, and I' are the spin
and isospin of nucleon i. For 'H and 'He, 8=~,
8', = ——,

' (for 'H) and 0;=+—,
' (for 'He). The mo-

menta p and q are defined by p=-, (k, —k,) and q
= (k, +k, -2k, )/2v 3, and are conjugate to the co-
ordinate vectors r =r, —r, and p =(r, +r, —2r, )/K3,
respectively, in the c.m. system; these are known

as the Lovelace coordinates. ' Our 'H wave func-
tion has 8.8@ D-state (8 = 2) probability. '

We define the dimensionless asymptotic normal-
ization constants, C& for the nd tail of the c.m.
'H wave function in terms of the J-j basis, which
is an eigenstate of the same operators as in the
2-8 basis except that the operators &'=QL+I)'
and 3'=(S+s)' are now replaced by J'=(L+S)'
and j' =(f'+s)'.

&r, yl+"' '&= O''2 -2 'C~&JMgj m I88, )&LMzSMgl'M~)&™,2m Iim )I ~ $ all m's

x" (~)F „.(~)ISM, &a,"'(tP&)y;. (j)l—'m ),
where we suppress the isospin part of the 'H wave function. The function h, "'(iPy) is the spherical
Hankel function of the first kind, and p is given by p=[(3 /M4h') IE, —

E~ I]'', where E,=2.225 Me& (the
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deuteron binding energy) and E, is the triton binding energy. We use the calculated value of Z, = 6.96
MeV instead of the experimental value of 8.48 MeV. The Jacobi coordinate variables are used for r
and y, i.e. , r=r, —r, and y=&(r, +r,)- r, . The deuteron radial wave functions, u~(r), are normalized,
f[u, '(r)+u, '(r)]r'dr =1. For the deuteron, J=S=1 and L= 0, 2. The parity consideration restricts I to
even values.

There are several methods of extracting C, from the trinucleon bound-state wave function 4. One
method is to use the integral relations for C derived by I ehman and Gibson" and by Kim, Sander, and
Tubis. " %e use here a simple extrapolation method of Kim and Tubis. '

Since our 'H momentum-space wa.ve function @ is given in terms of the 2-8 basis, Eq. (1) is trans-
formed into the &-g basis in momentum space after a change of variable p =(-,')"'y. After some alge-
bra, we obtain the following expression:

(p, q~+"" I'&=Qg(q) C, y~(p)Q V„Q (IM lm, ~2m~&(SM, —,'m, ~Sm, &

z, g all m&s

where

g (q ) (3)1/4(P /z )1/2(q2 + 3P2) 1 (2q/+3P)l

x (2m, Sm, ~ae, & V,'„,(p)r, „,(q)~Sm, &~-,'m, &, (2)

I SJ
V„= [(2$ + 1)(28+ 1)(2J + l)(2j+ 1)]'~2 I 2 j

use
with the subscript n representing a set of quantum numbers for the C-8 basis state with J=S=1 and
L=0 or 2. The momentum-space deuteron wave functions, y~(p), are defined as

y~(p) =i~ — J j~( pr) u~(r)r' dr.

The 2-S component (characterized by a set of quantum numbers {n])of 4"'~ can be extracted from
Eq. (2) as

&p, q, ~l+"'~& = Jd'p'Jd'q'&p, q, ~I p', q'&&p', q'I~"'~& =xi(q)'Ciq'i(p)V .

The comparison of Eq. (3) with the component ( p, q, n~4 & of the complete 'H wave function shows that
(p, q, n~4'& has a pole at the unphysical value q'=- —,'p' (= —0.1142 fm ') with the residue proportional to

(4)

with

(p, q, ~l +&(q'+ lp')
(3)'"(Si~)'"(2q/~3~)'~ (p)V

(5)

(6)

The complete 'H wave function + can be expanded in terms of the Faddeev components 4", i.e. ,

(r, yl+&=& ,rly+"' +&&ryl+"' +&&,ryl+"' &

The second and third terms of Eq. (6) will be negligible compared to (r, y ~4'~'~& when y approaches ~.
Hence, we may replace (p, q, et~4& in Eqs. (5) by (p, q, n~+I'~)."

The numerical values of 'C» 'C„'C„and 'C, are found by fitting the corresponding $.,(p, q) [Eqs.
(5)], for a fixed p, with a polynomial of degree N as described in Ref. 6. In Table I, we give the val-
ues of 'C, corresponding to fits for N = 2, 4, 6, 8, and 10. Our final extra, polated values are 'C,
= 1.7762+ 0.0025, 'C, = 1.7764+ 0.0026, 'C, = 0.06507~ 0.00017, and 'C, = 0.06510~ 0.00012. The calcu-
lated results of both 'C, =—'C, =C, ('H) and 'C, =—'C, =C, ('H) are expected since we can rewrite Eq. (1)
in the following form:

(r, y)e"~ P&= —p"Q Q C(ZSvi jm, )aa, &(&m, ,'m, )jm, &e,„—""'(r)a,.& ~(;py)y, „(y))-,'m, &,
l ~11 m's
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TABLE I. Values of C, corresponding to polynomial fits with $2(p, q)

[Eq. (5)] for M=2, 4, 6, 8, and 10. q~» is the maximum value of extrap-
olarization points, q&{i=1-Ã) used for a given lV .

(fm ')
2

0.115
4

0.0482
6

0.977
8

1.428
10

1.678

0.860
2.484
5.882
9.477

0.05788
0.06246
0.06154
0.06058

0.06489
0.06548
0.06581
0.06530

0.06494
0.06522
0.06508
0.06508

0.06486
0.06507
0.06498
0.06493

0.06480
0.06497
0.06488
0.06488

where 4 '"' is the deuteron wave function given by

'"'(r) = Q (LM~SMslZM~)u~(r)Y~„(x) LSMs), (8)

C.('H, P ~) =(P/P. q )"'Co('H) =1 657

C.('H, P~) ={P/P~) "'C2('H) =0 08o,

(1o)

(11)

C,('H, P ~) C,('H)
2( P cxP) C (3H P )P

2 C (3H)P2

We see that R, is independent of this correction,
i.e., R,PH, P~) =R, ('H) = —0.24 fm'.

In order to estimate the Coulomb correction for
the case of 3He-pd coupling constants, we replace
&~

' (iPy) in Ec[. (1) with the Whittaker function W:

l"'t(iPy) - „u, ,{Py) =- i'(1/Py)w „„„,(2Py).

Note that, when q =0, w, ~(py) =h, l')(ipy). For the
proton-deuteron tail, g =2e 2/MS32P('He) =0.0550

1330

with ~=S=1.
It is important to note that under the definition

given by Eq. (1) the relative phase of C, and C,
are unique for a given nuclear force model. In
fact, the recent measurement of tensor analyzing
powers for {d,t) reaction by Knutson et al.' has
determined the phase as well as the magnitude of

the ratio of C, to C„since their experimentally
determined parameter D, is related to our C,('H)
a,nd C,('H) by'

D ( H) = —C PH)/[C ( H)P ('H)]=R ('H) . (9)

If we use our calculated values of C,('H) =1.776,
C,('H) =0.065, and P ('H) =0.390 fm ', we obtain

R,('H) = —0.24 fm' in agreement with the experi-
mental value of —0.24 fm, Knutson et al. '

To estimate the correction for not using the ex-
perimental value of P, we replace P in the denomi-
nator of Etl. (5) by the experimental value, P~(3H)
=0.449 fm '. This replacement leads to the fol-
lowing results:

L with the experimental value of P~( He) =0.42033

fm ' and the nucleon mass M.
The above replacement leads to the following

approximations:

C ('He) = [P( H)/P( He)]' C pH)/f(0, q) =1.80,

C,('He) = [P('H)/P('He)] '~'C, pH)/f(2, rl) =0.060,

and

C.('He)
R, ( He) = -E(q)

(3 )P2(3 )
—0.24 fm,

where f is a Coulomb correction factor" given by

f(l, q) =l.'/I'(l +I+q), [f(0,q) =1.030, and f(2, g)
=0.950], and we used the calculated values, P('H)
=0.390 fm ', PPHe) =0.357 fm ', andE(0 0550).
=0.9242 wit»(n) =[{I+n')(4+v')]"'/(1+v)(2+~).
This factor I' {3)) for R,('He) is obtained by Fourier
transforming the expression for D, PH) given by
Knutson et al.' after substituting the plane-wave
state for the neutron with the Coulomb distorted
wave for the proton. ' The binding-energy correc-
tion similar to Eqs. (10) and (11) leads to the fol-
lowing results:

C,('He, P ~)= [P('He)/P ~('He)] ' 'C,pHe) '=1.66,

C,PHe, P~) = [P('He)/P~('He)] "'C,PHe)

=0.077,
R,('He), P.~) =R,('He) =- 0.24 fm'.

Our result of I C,('H, P~)l'=2. 75 is consistent
with the experimental value of Bornand et al. ,

"
C,('H) I' =2.6+ 0.3. The estimated value of

C,('He, P~)l'=2. 76 is consistent with the experi-
mental value, I C,('He) I' = 2.8 + 0.3, of Bolsterii
and Hale, '"but inconsistent with IC, ('He)l'= 3.5



VOLUME 429 NUMBER 20 PHYSICAL REVIEW LETTERS l4 Mxv 1979

+ 0.4 of Bornand etal. " Our result C, ('He)
=C,('He) is in support of the similar conclusion
previously stated by Kim and Tubis. '

In this paper, we have shown that the normaliza-
tion constant of the nd tail of the D-state 'H func-
tion, which Knutson et al.' have shown to have di-
rect experimental significance, is easily calcu-
lated value with the Reid soft-core potential is
consistent in both magnitude and phase with the
experimental value of Knutson et a~.' Since this
constant is one of the basic trinucleon bound-state
parameters, we strongly advocate that new inde-
pendent measurements of this constant be made
for both 'H and 'He. In particular, it would be
very desirable to determine this constant more
accurately, using the analytic properties of the
scattering amplitudes, from experimental meas-
urements of d-n, t-n, d-p, and 'He-p elastic scat-
tering and polarization cross sections. "'"'"
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Implications of the most recent pion-production data are discussed. It is observed that
they can be used to answer some of the crucial questions raised in understanding the ba-
sic reaction mechanism of relativistic heavy-ion collisions. As a by-product of this dis-
cussion, it is shown that the volume of the pion sources in violent collisions can be deter-
mined from single-particle inclusive data. Further hadron-nucleus and nucleus-nucleus
collision experiments are suggested.

In heavy-ion collisions at incident energies
above a few hundred MeV per nucleon, produc-
tion processes become important, and the over-
whelming part of the produced particles are
pions. Hence, in order to understand the basic
reaction mechanism of such collisions, it is
necessary to know "How are the pions produced
at these energies~"

In this paper, I discuss the implications of the
most recent pion-production results, ' ' especially
in connection with the following problems:

(a) What do we know about the space-time evo-
lution of the produced pions~ For example, are
the pions created while the participating nucleons
of the projectile nucleus are still inside the tar-
get nucleus~ Hadron-nucleus collision experi-
ments at very high energies strongly suggest
that the production time is so long that the nu-
cleons inside the nucleus along the path of the
incident hadron can be envisaged as acting collec-
tjeezy, and can in first-order approximation be
considered as a single object—an effective tar-
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