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that inhomogeneities can also produce a temper-
ature dependence in the line of maxima for the
incipient-triple-point case. Thus, although the
triple-point interpretation is still a possibility,
the incipient-triple-point interpretation provides
an attractive alternative which does not assume
the existence of the unobserved fluid-fluid coex-
istence region.

The triple-point interpretation suggested for
the N, -graphite phase diagram' also faces the
problem of an unobserved fluid-fluid coexistence
region. Although no isotherm studies have been
made for N, in the temperature range of interest,
heat-capacity studies' "have shown anomalies
similar to those presented here for krypton. It
is known from diffraction probes that both the
Kr-graphite system "and the N, -graphite sys-
tem"' "have a registered phase. Furthermore,
from bulk virial-coefficient studies, the Lennard-
Jones (LJ) hard-core parameters are very nearly
the same with o'(Kr) = 3.60 and v(N, ) = 3.698. To
the extent that Kr and N, behave like the ideal
LJ adsorbate, one might expect the phase dia-
grams for these systems to have essentially iden-
tical coverage dependence with a temperature
dependence that scales with the ratio of LJ poten-
tial strengths ~(Kr)/e(N, ) =1.799. In Fig. 1, the
locus of heat-capacity anomalies in the submono-
layer regime of the N, -Grafoil system is plotted
with the temperatures rescaled by ~(Kr)/~N, ).
The identity of the scaled lines of anomalies es-
tablishes experimentally a quantitative corre-
spondence between the Kr and N, submonolayer
phase diagrams. Near the monolayer the tem-
perature scaling breaks down (Fig. 1). The qual-
itative correspondence continues to higher cov-
erage, however, and the Kr heat-capacity signa-

ture near the monolayer [Fig. 3(c)] is essen-
tially identical to that previously observed for
N, in the same coverage range. " This detailed
correspondence between the N, and Kr systems
suggests that the incipient-triple-point interpre-
tation may also be applicable to the N, system.
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CsMnF, which support this concept.
The bicritical point (BP) of a low-anisotropy

easy-axis antif erromagnet was discussed theoret-

The ordering temperature T, of the easy-plane antiferromagnet CsMnF& was measured
as a function of magnetic field H. When H is perpendicular to the easy plane, T de-
creases monotonically with increasing H, but the decrease is not proportional to H . The
latter behavior is explained in terms of a virtual bicritical point which exists mathemati-
cally at a negative value of H2.

In this Letter @re introduce the concept of the
virtual bicritical point in easy-plane antiferro-
magnets, and present experimental data in
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FlG. 1. Schematic of the phase boundaries, in the T-
H~ plane, for (a) a uniaxial easy-axis antiferromagnet
and for (b) a uniaxial easy-plane antiferromagnet. H
is parallel to the symmetry axis. Note that the virtual
bicritical point (VBP) in (b) is below the observable
boundary (for 82 ~0).

ically in joint papers by Fisher, Nelson, and
Kosterlitz (FNK). ' ' Briefly, the application of
a magnetic field H to an antiferromagnet favors
configurations with the staggered magnetization
L perpendicular to H. If H is parallel to the easy
axis of the antiferromagnet then the H-induced
effective easy-plane anisotropy competes with the
intrinsic crystalline easy-axis anisotropy. The
intrinsic anisotropy dominates at low II, but not
at high K Thus, there are two ordered phases
with different directions of L: the antiferromag-
netic (AF) phase at low H, and the spin-flop (SF)
phase at high B. Each of these phases is sepa-
rated from the paramagnetic (P) phase by a criti-
cal line in the temperature-field (T-H) plane.
The two critical lines meet at the BP (T =T„H
=H, ), as shown in Fig. 1(a). FNK showed that as
the critical point T,(H) moves away from the BP,
a crossover due to a change in spin dimensional-
ity takes place. This crossover is similar to the
anisotropy crossover in ferromagnets, ~' and it
affects the phase boundaries (T, vs H) near the
BP. That is, the phase boundaries near the BP
do not follow the predictions of mean-field theory.
Experiments' and Monte Carlo calculations' have
confirmed many of the FNK predictions.

In this Letter we consider an easy-plane anti-
ferromagnet with no anisotropy in the easy plane.
The transition at the Neel point (T =TN, H = 0) is
then XY-like. If H is applied in the easy plane,
a unique preferred direction for L is created and
the transition becomes Ising-like. The XF-to-Is-
ing crossover, caused by H, should then lead to
a bow-shaped phase boundary in the T -8 plane. "
On the other hand, if H is perpendicular to the
easy plane, then no particular direction in that
plane is singled out, and the transition remains
XP-like. Because there is no crossover in this
case, one might expect that the dependence of T,
on 8 will be mean-field-like, i.e. , T, will de-
crease linearly with H' as long as H is small
compared with the exchange field H~(T = 0). How-
ever, it will be shown that data in the easy-plane
antiferromagnet CsMnF, do not agree with this
expectation. These data are explained by intro-
ducing the virtual bicritical point.

CsMnF, is a hexagonal easy-plane antiferro-
magnet. ' " The early interpretations of the mag-
netic data were based on a two-sublattice model'
which led to the following values at T =0: The ex-
change field is H~= 350 kOe; the uniaxial anisot-
ropy field, which favors the hexagonal plane, is
II„=—7.5 kOe; the anisotropy field in the easy
plane is H, ~ 1 Oe. A four-sublattice model"
leads to comparable values. No net spontaneous
ferromagnetic moment (canted moment) has been
observed in CsMnF, . Evidence for the XF char-
acter of the transition at H = 0 was presented in
Ref. 15.

We determined the phase boundaries of CsMnF,
by measuring the lambda anomaly in the thermal
expansion coefficient at different fixed values of
H, up to 120 kOe. The experimental procedures
were similar to those in Ref. 16. Two single
crystals were used. The Neel temperature for
both samples was T N

= 51.38+ 0.02 K. The depen-
dence of T, on A' was measured for two field di-
rections: (1) H

~~ [0001], i e , perp. e.ndicular to
the easy plane, and (2) H)) [10IO], i.e. , in the
easy plane. Data for H

~~ [1070] were taken in on-
ly one sample. The results, plotted in the T-H'
plane, are shown in Fig. 2. These data, are cor-
rected for the demagnetizing field. We focus on
the boundary for H~~ [0001]. Figure 2 indicates
that this boundary is not a straight line, so that
the prediction which is based on mean-field theo-
ry is incorrect. " The interpretation of the bound-
ary for H

~~ [0001] is based on a formal similarity
between a uniaxial easy-axis and a uniaxial easy-
plane antiferromagnets. We assume that H is
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FIG. 2. Measured phase boundaries of CsMnF3 for
Hll [0001] and Hll [1010]. The data points for H II [1010]
are detected. The solid line is a least-squares fit to
Eq. (1) of the H

II [0001] data in sample No. 1.
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parallel to the symmetry axis. Then, the expres-
sions for the free energies of the easy-axis and
the easy-plane antiferromagnets are similar, ex-
cept for a change of the sign of the uniaxial anisot-
ropy. In the easy-axis case, one obtains the
phase diagram shown in Fig. 1(a). To put the
easy-plane case on a similar footing, the range
of 8' which appear in the expression for the free
energy is allowed to extend beyond the physically
allowed range of H ~ 0 to the physically forbidden
range of negative H'. Then, if one proceeds for-
mally, one obtains the phase diagram shown in
Fig. 1(b), which is similar to that in Fig 1(a) ex-.

cept that some of the transitions occur in the ex-
perimentally inaccessible range of negative H'.
We call such transitions virtual transitions. The
concept of virtual transitions helps to elucidate
the behavior in the physical world of nonnegative
H'. In particular, the concept of the virtual bi-
critical point (VBP) explains the departure of the
SF-P boundary T,(H), for positive H', from the
mean-field prediction. The effect of the VBP on
T,(H) in the easy-plane case is similar to that of
the ordinary BP on the SF-P boundary in the
easy-axis case (see Ref. 18). When the magni-
tude of the easy-plane anisotropy is small, as in
CsMnF„ the VBP is close to the H'= 0 axis, and
the effect of the VBP on the measured phase
boundary T,(P) is pronounced. That is, the bound-

ary T,(H) is pronounced. That is, the boundary
T, vs H deviates significantly from mean-field be-
havior.

To discuss the VBP more explicitly we use the
renormalization-group treatment of FNK, but
change the sign of D(R) in E(l. (2.1) of Ref. 3 from
that for an easy-axis antiferromagnet to that for
an easy-plane antiferromagnet. With H parallel
to the symmetry axis, the reduced Hamiltonian
is still given by Eqs. (3.V)-(3.10) of Ref. 3. How-

ever, for a small easy-plane anisotropy, T,'
&Tp and all is slightly larger than or equal to a J,
where the notation is that of Ref. 3. Under these
conditions, it is y J which first becomes negative
when T is reduced in the presence of a positive
(or zero) h ~~'. Then, one can perform a renor-
malization iteration in which y J is small and is
slowly varying, but xll is increasing rapidly. This
implies an XF-like transition for H ~ 0. Con-
versely, an Ising-like transition occurs at suffi-
ciently large negative 8'. For some negative A',
~J and xll can be small and of comparable mag-
nitude. Then, a bicritical-type Heisenberg fixed
point can be located. This fixed point character-
izes the VBP described above. If B'=B„b Qp'

at the VBP, then the transition is ~-like for B'
&h'„b', and Ising-like for B'&H„b'.

It has been shown' that near the ordinary BP of
an easy-axis antiferromagnet, the symmetry-
breaking parameter g, which appears in the ex-
tended scaling hypothesis, "is proportional to
II -Hb . Similarly, in the easy-plane case, g is
proportional to H' -H„,' =H'+h p'. An expression
for the SF-P boundary T,(8') near the VBP was
obtained by following the procedure of Ref. 2, in
which optimal scaling axes were used. Here, we
made the additional assumption (to be justified
later for CsMnF, ) that the slope of the AF-SF
boundary was negligible. Assuming further that
the VBP was close to the 8' = 0 axis (i.e. , small
easy-plane crystalline anisotropy), the following
expression for the observable boundary was ob-
tained by subtracting TN =T,(FI = 0) from T,(P),

where y = q& (n = 3) = 1.25 is the crossover expo-
nent, and A and Bare positive constants.

The virtual spin-flop transition (AF-SF transi-
tion) of an easy-plane antiferromagnet is obtained
by following the standard argument for the spin-
flop transition of an easy-axis antiferromagnet, "
but changing the sign of the anisotropy and allow-
ing for the possibility of negative O'. The virtual
spin-flop transition at T = 0 occurs at H„,f(0)'
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= —
i 2HsH„i —= -H, '. The ordinary spin-flop tran-

sition of an easy-axis antiferromagnet occurs at
H, &(0)'= 2H~H„, for T =0. The concept of a vir-
tual spin-flop transition is useful, for example,
in considering the spin waves of an easy-plane
antiferromagnet in a (real) magnetic field direct-
ed parallel to the symmetry axis. The expres-
sions for these spin waves are identical to those
of an easy-axis antiferromagnet in the SF phase,
except that H, f' is replaced by H„„'(see Turov").
In particular, this recipe is applicable to the ex-
pressions for the antif erromagnetic resonance
frequencies.

The measured boundary T,(P) of CsMnF„ for
H ii [0001], was fitted to Eq. (1) by the least-
squares method, holding q fixed at y(n = 3) = 1.25.
The fit for sample No. 1 gavel=0. 97431, B

0 205 06 and A p 4 1 625 where H is in units of
kilo-oersteds, and T is in millikelvins. For sam-
ple No. 2 we obtained A =1.02215, B=0.21061,
and A p

= 44 397 The standard deviations for hp
are 5.1kOe for sample No. 1, and 2.5 kOe for
sample No. 2. The fit for sample No. 1 is shown
as a solid line in Fig. 2.

The values obtained for hp are in agreement
with the following estimate: Consider Fig. 1. In
most easy-axis antiferromagnets (e.g. , MnF„
Cr,O,), H, is within a factor of two of H„(0)
= (2HsH„)'i'. We expect a similar behavior in
most easy-plane antiferromagnets. That is,
H„,'= -h, ' should be comparable to H„,(0)'
—= —i2HsH„i = -H, '. In CsMnF„avalue H, =41.1
+ 0.6 kOe was deduced from antiferromagnetic
resonance measurements. " This value is indeed
comparable to our values for hp. The closeness
of H, ' to hp' also implies that the slope of the
(virtual) AF-SF line in CsMnF, is quite small,
i.e. , d(H')/dT» 10 Oe'/K which is small com-
pared to values of H'/(TN —T) in Fig. 2. This
justifies the neglect of the slope of the AF-SF
line in the derivation of Eq. (1).

A discussion of the phase boundary for H

ii [10IO], which is bow shaped because of the XI'-
to-Ising crossover, will be presented elsewhere.
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Elastic scattering of 14.4 keV Mossbauer y rays from incommensurate ammonium

fluoberyllate indicates that the distortion is essentially static and that phasons do not

make anomalously large contributions to the Debye-%aller factor of satellite refelctions.

Ammonium fluoberyllate (AFB) was shown by
Iizumi and Gesi' to exist in an incommensurate
form between 175 and 181 K. Within this temper-
ature range relatively intense satellite peaks can
be observed characterized by the wave vector Q
= (0.5-5)a", so that the scattering vector of one
of these reflections is given by k= 8+ Q, where
H is a vector of the reciprocal lattice existing
above 181 K. At 175 K the value of 5 drops dis-
continuously to zero from a value of approximate-
ly 0.015.

There is much interest in the crystal dynamics
of an incommensurate phase. Overhauser' drew
attention to a possible excitation he called a pha-
son that corresponds to phase modulation of the
incommensurate distortion. By taking the ground

/

state to be a single plane wave, the atomic dis-
placements may be represented by

u(L) =A sin[Q L+y(L, t)],

(p(L, t) =gqsin(q L tet). —

Overhauser went on to show that phason devia-
tions from the ground state constitute a coherent
superposition of phonon modes with wave vectors
tl+Q and j—Q. Long-wavelength phasons, then,
are located near satellite peaks in k space. Fur-
thermore in the phason branch co(tl)-0 as j-0.
The most remarkable feature of Overhauser's
phasons is that each phason contributes to the ex-
ponent of the Debye-Wailer factor an amount typ-
ically 100 times larger than that of a phonon with
the same frequency. Consequently the elastical-
ly scattered intensity at positions H+ Q should be

vanishingly small. But since long-wavelength
phasons produce scattering very close to these
positions, the total intensity, the sum of elastic
and one-phason scattering, could still be substan-
tial when integrated over a small region of k

space around H+ Q; the scattering observed at
satellite positions could be all inelastic. While
recent experiments' and theoretical predictions '
have shown the ground state of an incommensu-.
rate phase not to be a single plane wave, thereby
casting doubt on the relevance of Overhauser's
predictions, it is still clearly important to per-
form an energy analysis of the scattering at sat-
ellite positions.

We have done this in a Mossbauer y-ray scat-
tering experiment. Electromagnetic radiation is
obtained from the decay "Co-"Fewhich produc-
es y rays of 14.4 keV. The cobalt atoms are dif-
fused into a rhodium foil, 6 pm thick, of dimen-
sions 5x2 mm', with the effect that about 70%%up of
the y rays are emitted without recoil. The 150-
mCi source is held stationary and the radiation
scattered by the stationary crystal is passed
through an absorber containing "Fe before de-
tection by the counter. With the absorber also
held stationary, nearly all y rays elastically scat-
tered by the crystal will be reasonantly absorbed
within the absorber, while y rays scattered with
an energy change a little greater than the line-
width of the absorber will not be resonantly ab-
sorbed. By vibrating the absorber one can de-
stroy all resonant absorption, and so from the
difference in counting rates obtained with station-
ary and moving absorbers the elastic and inelas-
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