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magnitude as the one in the absence of the cooperative effects and therefore should be more directly accessible to
experimental observation.

If one considers a system with large numbers of atoms which are emitting independently, then one finds (Ref. 11)

y~~(7) =1+—'e"'& (1+—'e &'+ ~e ~& cos(407)+—'e &5~ ~ cos(2@7).

Again, there is a large difference between the structure of y«&~~ obtained under cooperative conditions and the
above expression as far as the weights and decay rates of the various contributions are concerned.
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The weighted mean square of the Navier-Stokes equation is mimimized with a complete
set of realizability inequalities as constraints. Expansion of moments in complete ortho-
gonal functions leads to successive approximations without ever involving moments of or-
der higher than 4. Alternatively, the expansions may be in Wiener-Hermite kernels,
thereby automatically satisfying the realizability constraints. The approach extends to
other classical and quantized systems with polynomial nonlinearity.

The nonlinearity of the Navier-Stokes (NS) equa-
tion couples velocity-field moment equations of
all orders. However, the values of moments up
to fourth order are sufficient to determine wheth-
er an ensemble of velocity fields satisfy the NS
equation in mean square. We suggest that this
can be the basis of a closed formulation, useful
for computation, in which moments of order high-
er than 4 never appear and the missing informa-
tion contained in the initial values of the higher
moments shows up as freedom in the evolution of
the moments retained.

The NS equation may be written as

L)(t) =dp )/dt +Q)vljyg ++»Al»ygpk = Oq

where they&(t) are the real amplitudes of linearly
independent modes of the velocity field, v~~ is a
damping matrix with positive eigenvalues, and
A&»+A, ,& +A„,&

=0 (conservation of Qp &

'
by the

nonlinearity). Consider the limit x-0 of the con-
straint on the ensemble'

f, ([I.,(t)]')p., (t)dt =~2, (2)

where ( ) denotes ensemble average, and p&(t) &0
for 0 & t ~ T. Equation (2) expresses approxima-
tion to the NS equation in mean square, with L&(t)
=O(a) in typical realizations. It implies, via
Schwarz inequalities expressing positivity of the
probability density, that the hierarchy of NS
many-time moment equations is satisfied with
errors O(a') as x-0, if the moments of all orders

exist in the limit. Equation (2) involves only sec-
ond-, third-, and fourth-order moments. It can
be used variationally to determine values of these
moments that solve the NS equation provided the
values are constrained to be realizable (i.e., rep-
resent an ensemble with nowhere negative proba-
bility density).

For a single real stochastic variable & the nec-
essary and sufficient conditions for realizability
are'

r=o

(b'""& max[( Z ~,(b"""&)'/I,„(~)],
s=0

(4)

where the maximum is with respect to the A., at
Q, ,"A.,' = 1. This can be continued indefinitely
yielding all I,„(X)& 0, provided only that the arbi-
trarily prescribed (b'") (n &N) grow fast enough
with n. Very large values of (b'"+') in (4) corre-

= Q ~„~,(b"")-0 (n=l, 2, ... , ) (3)
t', S=O

for all real X, such that Q", ,A.,'&0
~ Equation (3)

states that the symmetric matrix Q„,=(b" ') has
no negative eigenvalues. The moments (b") (n
& 2N) of an ensemble with given (b" ) (n - 2N) are
nonunique. ' If I,„(X)& 0 (all &) we can take (b'" ')
=0 and verify by minimizing with respect to ~&+,
that a sufficient condition for I»„(A)& 0 (all A.) is
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spond to making b very large in a fraction of the
realizations small enough to contribute negligibly
to (b»)

If b in the realizations of an ensemble is con-
strained to be a root of some polynomial I-
=Q, ,"A., 'b' then I»(X') =0 and the arbitrary ez-
tension (4) fails, reflecting a reduction in the
freedom of higher moments given the (&") (n - 2&).
Now consider a sequence of values (b") (n ~ 21@)

which approach finite limits in such a way that
I2„(&)& 0 (all &) and I,z(& ) =z' as I& -0. For every
nonzero v'alue of K the realizability of these mo-
ments is verified by the construction above. The

limit values are moments of an ensemble which
satisfies (L,') =0. As z-0 the right-hand side of
(4) goes to infinity; in effect we are demonstrat-
ing realizability of the given moments at small ~

by showing realizability for a composite ensemble
formed by adding to the (I') =0 ensemble a few
realizations with very large values of b. The
realizations where b is far from a root of I- have
zero measure in the limit.

These considerations, including the possible
construction of higher moments by a generaliza-
tion of (4), carry over to the case of many vari-
ables. The realizability conditions for moments
of they~ are

I,„(A) =([A.,++&fo X&(t)y&(t)dt +go ff, A„(t,t').y., (t)yz(t')dtdt'

+terms to nth degree in y 's]') & 0,

where the A. 's are arbitrary real functions satisfying

(A, 2++)f [A )(t)]2dt +Qg, ff [A )~(t, t')]adtdt'+ ~ ~ ~ j& 0. (6)

Vfe can show that a set of values for the many-
time moments of the y q to fourth order represent
an ensemble which satisfies (1) in mean squares
if and only if they are the limits as K-0 of values
which satisfy (2) and the constraints that

1,(Z)&0 (ail~) ~

In contrast to the single-variable case, (2) con-
strains the y& in the limit not to discrete values
but to hypersurfaces in the function space.

Although the limit values of the moments in (2)
are averages over some ensemble whose mem-
bers satisfy (1) except for a possible zero-meas-
ure set, this does not ensure that all fourth-order
moments evolve according to the NS hierarchy
equations. To see this, note that the moments

([y,(t)]') do not enter (2) because it happens that

A&» =0 if bvo indices are equal. Take a fraction
-v' of the realizations and in them take y &(t) =0
except for arbitrary values O(1/K) for y, (0) and

dy, (t)/dt (all t). The contribution to (2) is O(tc')

but that to ([y,(t)]') is O(1). Thus for ~-0 there
exist pathological ensembles that satisfy (1) in
mean square but have ([y,(t)]') varying arbitrari-
ly. They can be weeded out by requiring that
there be some finite values of all moments of or-
der ~ 6 and that I,(A.) & 0 (all A.). Then it follows
from (2) that the NS hierarchy evolution equations
for all fourth-order moments are satisfied with
O(z) errors. If I»(A. ) &0 (all &) and all moments
of order - 2N are finite (» 2), then the hierarchy
equations for all moments of order ~ (2N —1) are
satisfied with O(z) errors. If only (7) is imposed,

the limit moment values belong to an ensemble
such that the NS hierarchy of evolution equations
are obeyed with O(~) errors for all fourth-order
moments that appear in (2) and for all first-,
second-, and third-order moments whether or
not they appear in (2).'

Initial values of the moments to fourth order
are insufficient to determine their later values
uniquely because (1) is nonlinear. But conditions
on the behavior of these moments throughout the
time interval may reduce the ambiguity to zero
or unimportance. Thus, consider sationary iso-
tropic turbulence. To maintain it we can add a
forcing term f&(t) to L&(t), deal with moments of
the joint y-f distribution, and make the needed
additions to (5). It is reasonable to expect that
unique values of moments to fourth order are de-
termined by prescribing the many-time moments
of the f& to fourth order and then imposing a
smoothness condition, for example that the nor-
malized variance of the spatially local rate of en-
ergy dissipation be minimum.

We now outline two variational treatments of (2).
The first is to expand the unknown moments of
orders ~ 4 in some complete sets of orthogonal
functions on O~t ~T. We choose p&(t), admit
successively more terms in the expansions, and
minimize ~' subject to (7) and any specific condi-
tions on the solution. For the stationary turbu-
lence problem the constraint of least dissipation
variance could be imposed by minimizing at each
stage the sum of 1m&' and some function of the
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variance. If the exact solution is unique, we ex-
pect convergence to the exact values because the
orthogonal functions are complete. If there is not
uniqueness, we expect convergence to particular
exact values which depend on the choice of orthog-
onal functions, the p&(t), and the precise way the
minimization is carried out. The interval T may
have any length. We need not use a semi-infinite
interval to treat the steady state. But the choice
of T will affect the rate of convergence.

We conjecture that convergence of the approxi-
mations can still be obtained if, instead of im-
posing (7) completely at each stage, the A, func-
tions are also expanded in complete orthogonal
functions and successively more terms admitted.

An alternative treatment is to expand the y &(t)

and f, (t) in Wiener-Hermite (WH) functions' of
Gaussian white-noise processes in time' thereby
yielding expansions of the moments in terms of
the WH kernels. Successively more of the kernels
are admitted and minimization of w' carried out
as before. The WH expansion is complete and
automatically satisfies (5) for all n at each stage
of expansion. We therefore again expect conver-
gence to exact values of the moments. Although
the WH expansion of a random process is non-
unique, ' the fact of minimizing &' ensures the op-
timum expansion here.

The terms in the orthogonal expansions have the
same arguments always (n time arguments for
nth order moments in the general case). The WH

expansions are much more complicated. Interme-
diate arguments proliferate in the higher orders
and the structure closely resembles that of per-
turbation expansions for the moments. Moreover,
the WH kernels are unknown functions which them-
selves must be expanded for computation. The
most difficult part of the orthogonal expansion
scheme is (7), which is automatically satisfied in
the WH scheme. A combination of Monte Carlo
methods and techniques for extraction of minimum
eigenvalues of large matrices may be effective in
handling (7).

Both of the variational methods can be applied
to systems of the general form

lations of the form C„(y) =0, where C,&
is of sec-

ond degree in they's. Now they's are not sto-
chastic, but in correspondence to (2) and (7) we
consider the limit jt" 0 of

Q, f, (L, '(t)L, ,(t))p, (t)dt =~', (9)

r„,f.'«„'( )C„( )»„«=", (10}

1,„(~))0, (11)

where (X) denotes expectation Q„aX a(g„*pa)
over a density matrix (g *pa) (n and P label com-
ponents of the state vector P), pt(t) and ptt are
positive c numbers, daggers denote Hermitian
conjugation, andI»(A. ) is the expectation of the
product of the general Mth degree polynomial in
the y 's and its Hermitian conjugate. By argu-
ments like those for (7), (11) is a sufficient con-
dition for existence of a positive-definite density
matrix such that any set of matrices [y t(t)]„a la-
beled by i and t have given moment values (ex-
pectations of matrix products). Etluations (9) and
(10) then constrain these moment values and in
the limit w-0 imply that the matrix elements of
L& and C&& between states with nonzero represen-
tation in (p„*ps) vanish in mean stluare. The con-
struction (4) for moments satisfying the higher
realizability conditions can be taken over by as-
signing suitably large matrix elements [y &(t)] @

for n and p in the outer reaches of the system
configuration space.

WH expansions for the y ~, and expansions of
their moments in terms of the WH kernels, can
be carried out by using (-number white-noise
processes that satisfy commutation relations of
the form [a(t), a (t') ],= 5(t —t'). As in the c-num-
ber case the realizability conditions are automat-
ically satisfied to all orders by the WH expan-
sions.
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L,,(t) =dy t/dt -gt(y) =0, (8)

where they& are real stochastic variables, g&(y)
is a polynomial of degreeM in they's, and there
are conservation or other properties that ensure
healthy solutions. We simply replace (7) by I»(A.))0.' The methods can also be extended to the
case where the y&(t) are Heisenberg operators
and (8) is adjoined to equal-time commutation re-

'R. H. Kraichnan, Phys. Rev. 109, 1407 (1958). We
could instead take 2; Jo ((L;(t)l )p;(t)dt =~', where
L;(t) =f0 L;(s)ds. A general form is

Z;off (L; (t)L; (t'))p;„(t, t')dt dt' =~2,

where pzj (t p
t' ') is positive definite in the sense of being
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a possible covariance matrix.
2H. S. Wall, Analytic Theory of Continued Fractions

(Chelsea, New York, 1967), Chap. 17; G. A. Baker, Jr. ,
Essentials of Pade Approximants (Academic, New York,
1975), Chap. 17. We admit discrete distributions.

3The degree of ambiguity admitted by given moment
values can be surprising. By the use of Pads approxi-
mants, a discrete 5 distribution can be constructed
such that the moments to eight order have Gaussian
values but still b vanishes in 8/15 of the realizations.

4There is a subset of (7), defined by restrictions on
the A,, that involves only the moments of order ( 4
which have O(~) errors and yet provides sufficient con-
ditions for realizability of those moments. Moreover,
the full setIt, (A) & 0 is not needed to ensure O(1(, ) errors
for all fourth-order moments. Those relations that are

needed can be expressed as I4Q) & 0 relations for a for-
mally enlarged set of variables. Thus for the example
taken one could introduce q;(t) and require

T
Z;f ((q;-y; )2) p;(t)dt =K~

with (q ) finite.
'T. Imamura, W. C. Meecham, and A. Siegel, J. Math.

Phys. 6, 695 (1965).
WH expansions with basis processes that are not ran-

dom in time [S. E. Bodner, Phys. Fluids 12, 33 (1969);
W. C. Meecham, P. Iyer, and W. C. Clever, Phys.
Fluids 18, 1610 (1975)] do not describe sufficiently
general steady states of many-time moments.

~Bodner, Ref. 6; Neecham, Eyer, and Clever, H, ef. 6.
The device of Ref. 4 reduces these relations to the

form (7).
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