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neighboring atoms. Further consideration of
change in &u, /&u, for F compounds with different
chemical environments may improve to,/~, here
obtained. Study of the dependence af ~,/~, and

~,/cu, on the covalency is in progress
The chemical effect reflected in the intensity

distributions of the F Ka x-ray satellites pro-
duced by N4' bombardment was observed and
first explained quantitatively by introducing the
vacancy rearrangement process in the L shell
or the valence band of F . I~ estimated from the
L-vacancy rearrangement probability f is di-
rectly proportional to the covalency. The tech-
nique offers promise for determining the ionicity
or covalency of the chemical compounds with
valence L-shell electrons.
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We suggest that the intensity correlation function could. be an important tool in the study
of atomic cooperative behavior because it contains predominantly components at 0, +40
in the limit of large Rabi frequency (20) and large cooperation number. This is in con-
trast with the single-atom prediction where the intensity correlation function contains
only frequency components at 0,+2Q. The master equation for the collective system is
solved analytically in the secular approximation.

Many theoretical studies' ' of the cooperative effects in the interaction of atoms and molecules with
a laser field and the vacuum of radiation have been carried out since the early work on superradiance
by Dicke. ' Several manifestations of cooperative behavior have also been observed experimentally. '
In this Letter we discuss a commonly used model for the description of the collective behavior of two-
level systems interacting with radiation in the context of resonance fluorescence. We show that the in-
tensity correlation function"" of the scattered light contains predominantly frequency components
0, + 4Q in the limit of large Babi frequency (2&) and large cooperation number. This result is in con-
trast with the single-atom prediction which shows modulation only at frequency + 20 in the large-field
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limit. Thus the cooperative effects cause the intensity correlation function to have a very different
temporal behavior which should be manifested by experiments of the type carried out by Kimble, Dage-
nais, and Mandel. " In this Letter, we also report a new approach for the solution of the master equa-
tion describing the resonance fluorescence model from a collective system and present analytical re-
sults.

The master equation describing the collective decay of an atomic system (two-level atom) in the pres
ence of a driving laser field is given by'

BW/Bt =iQ[S+ +S,W]-y(S+S W-2$ WS++WS+S ) =-LW,

where 2A is the Rabi frequency and 2y is the Einstein A. coefficient. The operators S' and S" are the
usual polarization operators and W is the atomic density matrix. The same master equation has been
adopted as a model for the description of collective effects in resonance fluorescence in the limit of
strong cooperative behavior. ' The exact solution of (1) for arbitrary number of atoms is not known.
Numerical studies have been carried out for a limited number of atoms. ' ' If the laser field is suffi-
ciently intense, »y, it is possible to develop an approximation scheme that enables us to obtain
analytic results. After performing the transformation to the collective operators defined by

a"=S', a'=S', R' =S" (2)

we find that the Liouville operator L appearing in Eq. (1) splits into two components L, and L, ~ The
component I 0 is slowly varying in time, whereas I y contains rapidly oscillating terms at frequencies
20 and 4~. For intense fields, it is reasonable to make the secular approximation, i.e., to retain only
the slowly varying part. Corrections to the results obtained in this fashion will be of the order (yS/Q),
where S is the cooperation number. The new master equation has the structure

BW/Bt = —2iQ[R', W]-y([R'R'+4(R'R +R R+)]W-R'WR'-4(R WR +R WR ) +H.c.j. (3)

Equation (3) can be solved exactly with the following results.
(A) Steady-state fluctuations. The stat—ionary solution of (3) is given by

S

W= g )m&&m~,

where ~ m) is an eigenstate of S' and S'. The steady-state density operator (4) leads to the remarkable
result that the fluctuations are of order unity rather than 1/S:

(&S'S'&-(S'&&S'))/N'=-', (v+N'), (&S'S &-&S'&&S &)/N'=-,'(-,'+N ').

(8) Transient behavior and the spectrum of resonance fluorescence. One finds the following exact
result for the time evolution of the dipole-moment and inversion operators (in the frame rotating with
the laser frequency &u~):

(S'(r)) =Ye ~~' '~(S'(v)+S (7')&+-' exp[(2iQ —-', y)(t -r)]&S'(r) -S (~) —2S'(r))

—-', exp[(- »Q —-', y)(t —r)] (S (~) —S'(~) —2S'(r)) ~ (6)

(S'(t)) = —,
' exp[(2iQ --', y)(t —v)] (2S' (7) +S (r) —S'(r)) +c.c. (7)

The first-order atomic correlation function (which is proportional to the field-amplitude correlation
function) is found to be

lim (S+(t +r)S (r)) = ', [N(N +2)](--,' e &" +-,' exp[(2iQ —-', y)T ]+ ~~ exp[(- 2iQ - -', y) ]z) (8)

in steady state. This result yields the usual triplet structure in the resonance fluorescence spectrum
because, as well known, the incoherent part of the scattered spectrum is proportional to the Fourier
transform of Eq. (8). The cooperation number appears only in the form of a scale factor as previously
suggested by Amin and Cordep. " As a result of our expansion procedure, one expects additional cor-
rection terms to Eq. (8); these have been discussed by Senitzky' "using a different approach.

(C) Intensity correlations of the radiation emitted by a collective system. The recent mea—surement"
of the intensity correlation function in the resonance fluorescence has provided new insight into the be-
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havior of atoms in strong laser fields. The normalized intensity correlation function in steady state is
proportional to the atomic correlation function

y()(r) =lim{S+(t)S+(t+T)S-(t+7)S (t))/[imam(S'(t)S (t))]'.
0 t 0

The time-dependent solution of Eq. (3) leads to the following time evolution:

(S+(t)S (t)) =-,'S(S+1)+-,' (SR'R'-S(S+1))e i'7 ' "

+-'e '& ((R+R )e" "+(R R )e ""']+(2i) 'e "& "((R+)e" " (R-)e " "j

After use of the quantum regression theorem and the stationary solution (4), Eq. (10) leads to the fol-
io@ring result for the normalized intensity correlation function:

y~)(7) =1+-'(1+3/[4S(S+1)])e»~'l'
+-', (1-3/[4S(S+1)])e '7'cos(4&7) —-', [S(S+1)] 'e "&~' ' cos(207) . (11

The corresponding result for the single-atom case (S =-,') y„I'l is (»&y) .

y„~(7) =1-e b&" 'cos(207) . (12)

Upon comparison of Eqs. (11) and (12) it becomes clear that the cooperative correlation function y«&~)

has a rather different structure from its single-atom counterpart y~~.
In fact, the term modulated at frequency 2~ disappears in the limit of large cooperation numbers and

new contributions, instead, become important at zero frequency [i.e., the second term of Eq. (11)]and
at frequency 4&.'5 What is important here is that this effect is predicted even in zeroth order in the
parameter yS/&. Thus, y«) ') provides a new tool for the study of cooperative effects.
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magnitude as the one in the absence of the cooperative effects and therefore should be more directly accessible to
experimental observation.

If one considers a system with large numbers of atoms which are emitting independently, then one finds (Ref. 11)

y~~(7) =1+—'e"'& (1+—'e &'+ ~e ~& cos(407)+—'e &5~ ~ cos(2@7).

Again, there is a large difference between the structure of y«&~~ obtained under cooperative conditions and the
above expression as far as the weights and decay rates of the various contributions are concerned.
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The weighted mean square of the Navier-Stokes equation is mimimized with a complete
set of realizability inequalities as constraints. Expansion of moments in complete ortho-
gonal functions leads to successive approximations without ever involving moments of or-
der higher than 4. Alternatively, the expansions may be in Wiener-Hermite kernels,
thereby automatically satisfying the realizability constraints. The approach extends to
other classical and quantized systems with polynomial nonlinearity.

The nonlinearity of the Navier-Stokes (NS) equa-
tion couples velocity-field moment equations of
all orders. However, the values of moments up
to fourth order are sufficient to determine wheth-
er an ensemble of velocity fields satisfy the NS
equation in mean square. We suggest that this
can be the basis of a closed formulation, useful
for computation, in which moments of order high-
er than 4 never appear and the missing informa-
tion contained in the initial values of the higher
moments shows up as freedom in the evolution of
the moments retained.

The NS equation may be written as

L)(t) =dp )/dt +Q)vljyg ++»Al»ygpk = Oq

where they&(t) are the real amplitudes of linearly
independent modes of the velocity field, v~~ is a
damping matrix with positive eigenvalues, and
A&»+A, ,& +A„,& =0 (conservation of Qp &

'
by the

nonlinearity). Consider the limit x-0 of the con-
straint on the ensemble'

f, ([I.,(t)]')p., (t)dt =~2, (2)

where ( ) denotes ensemble average, and p&(t) &0
for 0 & t ~ T. Equation (2) expresses approxima-
tion to the NS equation in mean square, with L&(t)
=O(a) in typical realizations. It implies, via
Schwarz inequalities expressing positivity of the
probability density, that the hierarchy of NS
many-time moment equations is satisfied with
errors O(a') as x-0, if the moments of all orders

exist in the limit. Equation (2) involves only sec-
ond-, third-, and fourth-order moments. It can
be used variationally to determine values of these
moments that solve the NS equation provided the
values are constrained to be realizable (i.e., rep-
resent an ensemble with nowhere negative proba-
bility density).

For a single real stochastic variable & the nec-
essary and sufficient conditions for realizability
are'

r=o

(b'""& max[( Z ~,(b"""&)'/I,„(~)],
s=0

(4)

where the maximum is with respect to the A., at
Q, ,"A.,' = 1. This can be continued indefinitely
yielding all I,„(X)& 0, provided only that the arbi-
trarily prescribed (b'") (n &N) grow fast enough
with n. Very large values of (b'"+') in (4) corre-

= Q ~„~,(b"")-0 (n=l, 2, ... , ) (3)
t', S=O

for all real X, such that Q", ,A.,'&0
~ Equation (3)

states that the symmetric matrix Q„,=(b" ') has
no negative eigenvalues. The moments (b") (n
& 2N) of an ensemble with given (b" ) (n - 2N) are
nonunique. ' If I,„(X)& 0 (all &) we can take (b'" ')
=0 and verify by minimizing with respect to ~&+,
that a sufficient condition for I»„(A)& 0 (all A.) is
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