
VOLUME 42, NUMBER 19 PHYSr CAI. REVlEW LETTERS 7 Mar 1979

A Long-Standing Conjecture and a New Uniqueness Condition for the Solution
of the Elastic Unitarity Equation

I. A. Sakmar
Applied Mathematics Department, University of Western Ontario, London, Ontario NGABE7, Canada

(Received 31 January 1979)

We improve the sufficient condition for uniqueness of the solution of the elastic unitarity
equation for given differential cross section. Uniqueness is proved for sin@ & 0.9577,
which is close to the conjectured condition sing&1. Here simp is the supremum of an in-
tegral determined by the cross section. Improved conditions depending on the infinum of
the integral are also obtained.

It has been almost a decade since a conjecture was made on the uniqueness condition for the solu-
tion of the elastic unitarity equation. If we write this equation as

sinu(z) =-q (+' +' If(x)I'f(y)( cos[n(x) —n(y)] dxdy,
e(sc)

1 1

sin p, &0.79

was the best condition given at the time the con-
jecture was made. Uniqueness conditions depend-
ing on sinv were derived by Atkinson, Johnson,
and Warnock' and more recently by the present
author. '4

%e obtained recently' another uniqueness condi-
tion using a different approach. This sufficiency
condition is

inf sin p(z) &sup siny(z). (2)

Here y(z) is any lower bound for the phase n(z).
In this paper I combine our results of Refs 3-5

to obtain the strongest yet condition for the unique-
ness. I have shown in Ref. 3 that

sinn(z) ~a„(p,, v) cos p. sin p(z),

where f is the scattering amplitude, the square
of which gives the differential cross section, q
is the c.m. wave number, n(z) is the unknown

pha, se function, 0(K) is the step function, and K
=1 —x' —y' —z'+2xyz, the conjecture was that
the solution is unique if

sin jL(, &1.

Here sing is the supremum of the integral sin p(z)
which is obtained from the Eq. (1) by majorizing
cos[n(x) —e(y)] by 1. I shall also use the infinum
of sing(z) whichwillbe denotedby sinv. The
bound

! is a lower bound for sina(z). From this we ob-
tain

cos p, sinjU,
sup slny z) =

(1 —2 sing sinv+ sin'v)'~'

and when we combine this result with the expres-
sion (2) there results

cos p, sinjL(,
sinv &—

(1 —2sin psinv+ sin'v)'t2' (6)

to

O'

4.

Condition (6) is our result and it is best analyzed
with the help of Figs. 1 and 2. Figure 1 shows
the right-hand side of (6) as a function of sinv for
different values of the parameter sinjL(, . The inter-
section of these curves with the line u = sinv gives
three roots which are the solutions of the expres-
sion (6) in the case of equality.

lim„„a„=(1—2 sin p, sinv+ sin'v) (4)

where a„has a limit for n —~ which is given by

2 8
~ sing

't

Thus

cos p. sing(z)(l —2 sin p, sinv+sin'v)

FIG. 1. Parametric solution of Eq. (6): the right-
hand side of Eq. (6) as a function of sim with sing as a
parameter.
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.447 -958 sing as an explicit function of sing. As can be seen,
for sin p, &0.9578 the curve has three branches.
In this region the inequality (6) is still satisfied
if sinv is less than the lowest branch or is be-
tween the two upper branches. For comparison
I have also given my previous result, '

sing, —cos p,sinv & 1-sing, cos p.
'

10 2(f 30 4f 5(f 6Cf 70 SCf 9(f p

FIG. 2. Plots of all the existing uniqueness conditions:
sinv as a function of simp. Vertical lines are sinp-inde-
pendent bounds. N and M refer to Newton's and Martin' s
bounds (Refs. 1 and 6). To the left of these values,
0.447 and 0.79, the solution is unique. (6), (7), and (8)
refer to the equations given in the text. For the curves
(7) and (8) the uniqueness regions are the domains
above the curves. For the curve (6) the region of
uniqueness is the entire domain of the picture except
the half-top shaped area at the extreme right between
the right branch of the curve (6) and the vertical line
at @=90'.

the result of Ref. 2,

cos p,sin v )sin p, —
(4

and the results of Ref. 1 and of Newton, '

sing, (0.79 and sin p, (1//5,

respectively. Figure 2 shows that except for the
region at the extreme right of the figure the con-
jecture is proven.

This work was supported by the National Re-
search Council of Canada.

It is seen that for

sin p, &0.9578

the condition (6) is satisfied regardless of the
value of sinv. This can be read off from Fig. 2

which shows the solution of Eq. (6), namely, sinv
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Qualitative features of the y-emission spectrum from nuclear states in the 50-MeV ex-
citation energy range to states in the giant-dipole-resonance region are described. Prop-
erties of the initial- and final-state structures are deduced.

In an exploratory study of proton radiative-cap-
ture reactions at the Indiana University Cyclotron
Facility, Kovash et ai.' observed intense primary
radiation to excitations of the residual nucleus
which were identified as stretched-configuration
8~0 particle-hole states in closed-shell nuclei
and the corresponding single-particle states in
closed-shell-plus-one nuclei. The purpose of
this Letter is to describe qualitative features of

this radiation and the structure of the excitations
involved. These features indicate that proton ra-
diative-capture reactions for incident protons
with energy greater than about 25 MeV may be
used to map out the density of one-body states
from the Fermi level to 60 MeV excitation, per-
haps higher.

A schematic representation of the radiation ob-
served' in closed-shell residual nuclei is shown
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