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where we have forced the wave vector at T~ to
be q= &. In this case (Fig. 1, dot-dashed line)
there seems to be only one transition to a phase
with N = 4, and no new phases appear when N is
increased, in contrast to the devil' s-stairs be-
havior. However, by changing the parameters
slightly, the devil's staircase immediately shows
up again.

In conclusion, we have demonstrated that our
model exhibits multiple phase transitions between
commensurate phases when the temperature is
varied, despite the fact that the model includes
three temperature-independent parameters only,
and we can increase the number of phases by re-
fining the calculation. This is consistent with the
devil' s-stairs behavior. It would be interesting
to investigate our model analytically to find out
whether or not the devil's staircase is complete.
We also suggest that accurate experiments be
performed on periodic magnetic systems to
search for the stepwise behavior.

We would like to thank Dr. 8. Aubry for inter-
esting discussions on the devil's stairs, and Dr.
B. Lebech for explaining to us the experimental
situation for CeSb.
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Textural Singularities and Frustration in Random-Anisotropy and Random-Field Models
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Spin models with random anisotropic fields and random magnetic fields are studied.
It is shown that integral-index textural singularities of these fields act as disclination
sources and participate in destroying long-range ferromagnetic order. Half-integral-
index singularities give rise to frustration. The relation of these models to bond disor-
dered spin-glasses is discussed.

Frustration is generally believed to play a fun-
damental role in determining the nature of spin-
glass phases. The concept has, however, only
been defined' and studied"' for models where the
frustrations are properties of the underlying
bond structure. Recently spin models with ran-
dom magnetic fields'~ and with random anisotro-
pies" have been studied by several authors.
The results show remarkable similarities to

those found previously for bond-disordered spin-
glasses. An interesting and related feature of
these models is that long-range ferromagnetic
order does not seem to exist below four dimen-
sions."Our purpose here is to show that one
can indeed define frustration as an inherent prop-
erty of the underlying (random) fields. Frustra-
tion defined in this way has properties very simi-
lar but not identical to those discussed by Tou-
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louse' for the bond network. We find that it is
closely related to, and in fact reflects, the topo-
logical properties of the textural singularities
of these fields. We also find that other types of
textural singularities, which do not induce frus-
tration, may also play an important role in de-
stroying long-range order.

It is convenient to start by discussing two-di-
mensional models, mainly because the singulari-
ties are simpler and easier to visualize. We
first consider the two-dimensional analog of the
Harris-Plischke- Zuckerman model, ' i.e., a two-
component (n =2) ferromagnet with random anisot-
ropies in two dimensions:

&=-J'QS» ~ S;+X+» S» ~ (n»*n» —R) ~ S», (1)
tl

where the spina S» are two-dimensional (2D) unit
vectors, n» = (cosy», sing») is a two-component
unit vector of random orientation and summations
(i, j) are over the sites of a 2D lattice. For a
continuum one would have an anisotropy field

(2)

The singularities can be classified by an integral
or semi-integral index m where

)&vq .dr =2~. (2)

The integral is on a closed loop around the singu-
lar point and y(f) is the angle determining the
orientation of n(r). The analogous situation for
nematics is discussed by de Gennes. ' Frustra-

tion is implied by semi-integral values of m.
The anisotropy field is rotated by an odd multi-
ple of & in going around the singularity. As a re-
sult the spins cannot adjust to the anisotropy
field by continuous deformations. Between any
two points, continuous adjustment along paths
passing on different sides of the singularity will
lead to conflicting results. We illustrate this for
the simplest cases (m=+ —,) in Figs. 1(a) and 1(b).
Thus a singular point is frustrated if

(4)

Frustrations cancel each other in pairs and can
be "removed" by cuts along strings connecting
them. An 'arbitrary path has frustration

4' =IIC „=exp(2»»imam„),

where v is an index for the enclosed singularities.
We note that there are many different types of
frustrated points (for all semi-integral m) con-
trary to the bond model which has only one type
of frustration. The frustration can always be
canceled out between any two frustrated points.
However, as we shall see, .only points of equal
and opposite rn cancel each other completely.
Otherwise one is left with a net effect equal to
that of an integral point.

On a lattice the integrals [Eq. (2)] are, of
course, not defined and the relationship between
the n» and the continuous field i!i(T) is not unique.
We therefore replace the definition of @ [Eq. (4)]
by

sgn Q (n, ~ n~) = g sgn(n» ~ n&) if all n» ~
n& & 0,4= bonds honds

1 if any nj ~ ~n, =0,
(6)

where the product is over all bonds on a closed
path on the lattice. Setting C' =1 whenever two
neighboring nj are orthogonal is arbitrary but
convenient. With the definition (6) one has, for
any path,

@»a~» = II
pl aquet tes

as for bond frustration, where the product is
over all elementary plaquetts enclosed. We also
note that the (arbitrary) sign of n» has no effect
on the definition given. For any field A(f') the
definitions (4) and (6) become equivalent when the
points i are sufficiently dense on the path. It is
easy to see (e.g. , by inspection) that Eq. (6) is
correct form for an elementary plaquette. There
are, of course, an infinite number of ways of
constructing a continuous field n(r) equal to n»

eff = &cos(p» —p,.) = Jn» ~ n; (6)

at lattice sites i. %'ith the above definition of @',

we believe that it is always possible to construct
such a continuous field with half-integral-index
singularities at all frustrated plaquettes. We note
that in some case, it may be possible to con-
struct fields with only integral-index singulari-
ties even though there are frustrated plaquettes
on the lattice.

It can thus be seen that the frustrations intro-
duced by the anisotropy field have properties
analogous to those generated by the interactions.
The similarity becomes clearer when one con-
siders the limit K- . This limit can be de-
scribed in terms of the effective spin interactions
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(c)

m=-1

(d)

FIG. 1. Small-index singularities for the anisotropy field of a two-dimensional field in two dimensions. The
lines indicate the orientation of the anisotropy fields and the arrows show representative minimum-energy arrange-
ment for a ferromagnet. Squares are drawn in to illustrate how the singularity would manifest itself at the lattice
points. Frustrated strings are drawn as double lines.

which are randomly distributed (but correlated).
We have seen that the anisotropy field has other

types of singularities. The simplest ones which
do not involve frustration (m =+ I) are shown in
Figs. 1(c) and l(d). It can be seen that one can
deform a ferromagnet to adjust to these types of

anisotropies and no frustrated cuts are required.
Ferromagnetic order is, however, destroyed be-
cause the singularity is not consistent with any
unique axis of magnetization. %e first investi-
gate the appearance of these singularities on a
lattice. For an elementary plaquette with n cor-

1—+ —=1
2 2

——+ —=0
2 2

FIG. 2. Illustration of how two semi-integral-index points on neighboring squares add up. It can be seen that
the pair of squares acts as a source (of strength m +1) when the two singularities are of equal sign. When the signs
are opposite, the effect of the pair is localized.
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ners the maximum rotation angle of the magneti-
zation induced by the anisotropies can never ex-
ceed

Thus for the triangular and square lattices (but
not for the honeycomb lattice) any distribution of
anisotropies can, therefore, be derived from a
field Q(r) which has only m =+ 2 singularities.
They do, however, add up. Thus bvo+& defects
within a larger boundary will look like a +1 dis-
clination source (Fig. 2) ~ The disclination can
only be eliminated by a disclination of opposite
sign. Thus while frustration tends to be local one
expects long-range disclination effects. Using
the central limit theorem, one can argue that in
two dimensions, the net strength of a random
distribution of disclination sources inside a boun-
dary increases linearly with the dimensions of
the loop.

The generalization of these results is, in prin-
ciple, straightforward. We consider first a
three-dimensional spin with uniaxial anisotropy.
The anisotropy field is isomorphic to a nematic
liquid crystal. In two dimensions, the only top-
ological singularity is a point' with m = + 2. All

points with semi-integral m become topologically
equivalent and all integral points are unstable.
Defects whose 2D projections have these struc-
tures still exist in the frozen anisotropy field
but can no longer serve as sources of diselina-
tions. (A 3D spin has no staMe disclination
points in two dimensions. ) Thus the only sources
of disorder are frustrations. In the infinite-K
limit, the model becomes completely equivalent
to a bond-disorder model of the Edwards-Ander-
son type with a continuous distribution of mag-
nitudes of J.

The 3D case is somewhat more complex be-
cause of the nature of the topoligical singulari-
ties. We discuss'only the 3D spin with uniaxial
anisotropy, and restrict ourselves to two types
of singularities': (a) lines with index m = 2 de-
rived from the 2D points; (b) points with index

m, where m is a positive integer. These can
serve as sources for point disclinations.

The lines should form closed loops. They man-
ifest themselves on a lattice as arrays of the
frustrated plaquettes through which they pass.
The frustration can be removed by a cut on any
covering surface bounded by the line. These
are equivalent to the covering surfaces discussed
by Toulouse' and by Kirkpatrick' for bond frus-
tration.

We believe the closed loops can also act as
sources for point disclinations with an index m

depending on the way the line is closed. In three
dimensions one can, however, also have lattice
cells which display an rn = 1 disclination point
directly. For example, a cube with anisotropy
axis along the body diagonals at a11 corners.
Thus one certainly has disruption of long-range
order by frustration and by disclination sources.

The situation with a random magnetic field is
somewhat different. Since this is a vector field,
only singularities with integral index are pos-
sible. ' These act as sources for disclinations.
Frustrations are only induced when the magnetic
field itself is frustrated. This implies that not
only the positions of the frustrated plaquettes
but also the exact configuration of strings (or
covering surfaces) are determined by the con-
figuration of the underlying field. We note that
this implies that one cannot have the ground-state
disorder associated with different minimum-en-
ergy string (or covering surface) configurations
which seems to be important for bond disorder. "
This type of ground-state degeneracy is possible
for the random-anisotropy model.

We would like to point out that our analysis sug-
gests the possibility of two types of disordered
phases for the random-anisotropy model as a
function of the ratio

(10)

[Eq. (1)]. When K is large, the anisotropy field
dominates at all distance scales. Frustrations
are therefore important and we expect spin-
glass-like behavior. When K is small, it seems
likely that the interaction wiD overpower the es-
sentially local frustration effects. One then ex-
pects that long-range order is only destroyed
by the accumulative effect of disclination sources.
This presumably also implies a much weaker
ground-state degeneracy. Thus a multicritical
point for some critical value of K (K,) is sug-
gested. In the magnetic field ease it is hard
to envisage a phase transition when the random
field becomes large. We believe this probably
implies an upper critical value for the magnitude
of the random magnetic field (II,) above which
there is no phase transition. It is, of course,
possible that IJ, =O and this may well be the case
below four dimensions where it is known that
long-range ferromagnetic order is destroyed
even by an infinitesimal random external field.
We feel these possibilities should be investigated
further.
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We present preliminary measurements of the linear polarization of the cosmic micro-
wave background (8 K blackbody) radiation. These ground-based measurements are made
at 9-mm wavelength. We find no evidence for linear polarization, and set an upper limit
for a polarized component of 0.8 mK with 95% confidence level. This implies that the
present rate of expansion of the Universe is isotropic to 1 part in 10, assuming no reion-
ization of the primordial plasma after recombination.

The observed cosmic microwave background
radiation is generally thought to be a relic of the
hot, dense, initial phase of the Universe. This
radiation should then have characteristics which
reflect its thermal origin and the geometry of the
early Universe. The simple hot big-bang model
predicts that this radiation has a blackbody
(Planckian) spectrum, is unpolarized, exhibits
the statistical properties of blackbody radiation, '
and is isotropic in a reference frame comoving
with the expansion of the Universe.

The spectrum of this radiation has been exten-
sively investigated. ' The best experiment to date
is that of Woody and Richards. ' Although their
results qualitatively follow a blackbody spectrum,
they report a 5o deviation (o is 1 standard devia-
tion) from the best-fit blackbody curve. There
have also been many measurements of the angu-
lar distribution of this radiation with recent re-
por«of a (3.5+0.6)-mK-amplitude first-order

(cosine) anisotropy. " It is thought that this an-
isotropy is a result of the Doppler shift caused
by the motion of the solar system relative to the
cosmic radiation. If this interpretation is cor-
rect, the cosmic radiation shows an intrinsic
anisotropy of less than 1 part in 3000 (1 mK).
The polarization properties of the radiation have
been largely unexplored although, in their origin-
al paper on the discovery of the background radia-
tion, Penzias and Wilson assert that this radia-
tion is 'within the limits of our observations. . .
unpolarized. . .".' Nanos' and Caderni et al.
have searched for evidence of linear polarization
with negative results.

It is of great interest to measure the polariza-
tion because of its potential to detect and distin-
guish deviations from the si.mple big-bang model.
Bees has shown that any intrinsic anisotropy in
the cosmic radiation present at the time of de-
coupling or last scattering manifests itself as a

1979 The American Physical Society 129


