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Microscopic Screening and Phonon Dispersion of Silicon: Moment Expansion
for the Polarizability
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A phonon dispersion curve of Si is calculated using the microscopic theory of dielectric
screening. The electron energies and wave functions are calculated from a crystal
pseudopotential which is self-consistent with the electron-ion pseudopotential. For the
polarizability matrix a continued fraction expansion including the zeroth and first moment
is used. The first moment is treated as a constant. The results are sensitive to both the
self-consistency condition and the closure approximation.

In the microscopic theory of lattice vibrations the effect of the electrons on the forces between the
ions is taken explicitly into account. This leads to two contributions to the dynamical matrix: a direct
ion-ion term and an ion-electron-ion term which describes that part of the interionic interaction medi-
ated by the electrons. The direct ion-ion term is well known and is calculated in the usual way by an
Ewald procedure. The indirect ion-electron-ion term is given by the following expression:

D,&'"(q; ab). = [ g X „(ab; q, G, 6') —5, ,+X,, (ac; 0, 6, 6'}]

with

X,, (ab; q, G, G') =(»i, —[(q+ G), V, *(q+6) exp( 'G R, ) y(q, 6, 6')
xexp(- i G' ~ R, ) V, (q+ G') (q+ G' ),], (2)

where i and j refer to the Cartesian coordinates, and a, b, and c refer to the atoms in the unit cell. q
is the phonon wave vector and G and G' are reciprocal-lattice vectors. M, and M, are the masses of
atoms a and b and v, is the volume of the unit cell. V, and V„are the form factors of the electron-ion
potential. y is the density response matrix which describes the linear response of the electrons to an
external potential. This matrix is related to the inverse dielectric matrix e ' and the polarizability
matrix by the following relations:

&= I —vg

and

where v is the electron-electron potential.
In the Hartree approximation, the polarizability matrix is given by'

(3)

The indices k and / refer to the electron quantum numbers, i.e., the wave vector and band number.
and q, are the occupation numbers of the electron states ~k) and ~l ). The prime on the summation ex-
cludes states with the same indices.

Calculations of the phonon dispersion by the present authors based on Eq. (3) have shown that for a
direct summation of up to forty conduction bands the square of the TA mode remains negative for all
wave vectors in the 6 direction, including the X point. It is also found that the convergence of the
phonon frequencies with respect to the number of conduction bands is rather slow. The first term in
a Taylor expansion of the wave function with respect to the displacement of the ions is represented by
a perturbation expansion. Sinha' showed before that such an expansion does not converge mell at all in
the case of a displaced hydrogen atom. A similar slow convergence of the number of conduction bands
has been reported for the elements of the polarizability matrix. '

This convergence problem is inherent to Eq. (3) since in practice only a limited number of conduc-
tion states can be taken into account. In order to investigate the effect of the higher conduction bands,
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the following approach has been adopted. The polarizability matrix is expanded in a continued-fraction
series with respect to the summation index l. Using such an expansion, the summation over the index
l can be eliminated in each moment via the completeness relations, so that closure over all the states
is obtained.

In the present calculation only the zeroth and first moments are retained. The polarizability matrix
can be written as follows:

n» ~.(»
0 „E„—p, ,(k)/p, (k)

'

The zeroth moment is equal to

p,,(k) = (k!exp[i(G' —G) r ]!k) —p, rp, (k!exp[-i(q+ G) r] ! EXE ! exp[i (q+ G') r ]!k)

and the first moment

p, ,(k) = (k!exp[-i(q+ GQ r]H, exp[i(q+ G') r]!k)

—p, q, (k!exp[-i(q+G) ~ r]lXl!H, exp[i(q+ G') r]!k),

(4)

(5)

(6)

where Qp is the pseudopotential Hamiltonian.
As an additional approximation, p, /po in the

denominator of Eq. (4) has been treated as a con-
stant, F, This constant is used as a parameter.

The formula for the polarizability in Eq. (4) is
a refinement of the expression reported earlier
by the present authors' where the energy denomi-
nator [Eq. (3)] is approximated by a constant and
set equal to the Phillips's band gap. '

It should be noted that in both Eqs. (5) and (6)
the sum over l includes all the valence states.
The first term of p,„which is the Fourier trans-
form of the charge density, is independent of q.
For small values of the wave vector q, the sec-
ond term of p,, cancels the first term and gives
an additional contribution proportional to q'.
This means that in the limit as q goes to zero,
y is also proportional to q', as it should be for a
semiconductor. If only one state l =k had been
subtracted from the first term on the right-hand
side of Eq. (5), g would have been a constant for
small values of q.

As a result of treating p., as a constant, the
diagonal of the polarizability is also a constant
for large values of G and O'. Instead, it should
behave as 1/G'.

The one-electron energies and wave functions
needed in Eq. (5) are calculated in the pseudopo-
tential method. The crystal pseudopotential,
which enters i.n the Hamiltonian, is calculated
iteratively to self-consistency, ' starting from a
Topp-Hopfield electron-ion potential:

V, (r) = V, cospr+ V, , r (r,
(Vr)=-Z./ rr)r„

where r, = 1.6 a.u. and p= 2.2156 (a.u. ) '. The

! constants V, and t/', are determined by requiring
that the potential and the first derivative are con-
tinuous at r=. x, .

The self-consistency between the crystal and
electron-ion pseudopotential plays an essential
role in obtaining positive transverse-acoustical
frequencies. This self-consistency makes the
wave functions in X and the electron-ion pseudo-
potentia. ls V, and V„ in Eq. (1), compatible. Be-
cause of this compatibility, the generalized
acoustic sum rule, which gives a relationship be-
tween the electron density response matrix X and
the charge density, is automatically satisfied. "
It should be emphasized that the constants ~, and

P are not used as parameters to fit the phonon
frequencies.

In the present calculation, the origin has been
chosen halfway in between the atoms of the unit
cell. Consequently all matrices —Hamiltonian as
well as dielectric matrix —are real. The lattice
constant is 5.417 A. A dimension of 59 has been
taken for the Hamiltonian matrix in the I'point.
The dimension of the polarizability matrix is 27
for q=0.

The resulting phonon dispersion for a calcula-
tion with the parameter Ep 10 88 eV is shown in

Fig. 1. This value of E, has been chosen in the
following way: As a first approximation, the av-
erage over the Brillouin zone of the denominator
of Eq. (4) is set equal to minus the average of the
energy difference between the lowest conduction
and highest valence bands, This average is also
equal to the Phillips band gap, ~. For Si,
= 4.08 eV and the average of the valence-band en-
ergies is 6.8 eV. As a result, one obtains over-
all meaningful dispersion curves.
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FIG. 1. Phonon frequencies obtained in the closure approximation with the crystal pseudopotential which is self-
consistent with the Topp-Hopfield electron-ion potential (solid line). For comparison, the experimental data points
(Ref. 11) are shown (circle, longitudinal modes, ' triangle, transverse modes).

The TO mode in the 6 direction still increases
slightly in contradiction with experiment. The
TA mode in the X point is within 17%%uo of the ex-
perimental value. In the approximations used
here, it is found that the determinants of y and g,
are exactly equal to zero, for all the values of q,
in the same way as these determinants are zero
for a direct summation in Eq. (3) of up to forty
conduction bands.

The TA mode in the 6 direction is very sensi-
tive to the details of the calculation. For a
change of the parameter E, by 25% to a value of
13.6 eV, the squares of all the TA modes are
negative, i.e., the crystal becomes unstable
against shear. For smaller changes of E, by
10%%uo to a value of 11.42 eV, the TA mode in X is
positive but the square of the TA mode in the P
direction becomes negative. If the crystal pseu-
dopotential is kept constant, but the first node
of the electron-ion pseudopotential in Eq. (7) is
changed by 5%, then the squares of the TA mode
become negative again. It is therefore concluded
that the self-consistency between crystal and
electron-ion pseudopotential is essential in order
to get meaningful phonon frequencies.

It should be noted that negative squares of the
TA mode are also obtained if the polarizability
matrix is calculated by direct summation over
the unoccupied states, as in Eq. (3), for up to
forty conduction bands.

In summary, the phonon curves presented in
this paper are obtained by using the self-consis-
tency between crystal and electron-ion pseudo-
potential, and closure over all the conduction
states via a moment expansion of the polarizabil-
ity. The results are sensitive to the choice of
the pseudopotential as well as the value of the
parameter used for the first moment.
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depends on the bare band velocity v, ~', effective
renormalization Z„(~), and induced energy gap
&„(~)=(cu' —e„')"'. As Rowell and McMillan'
point out in their original study of Ag-Pb, such
structure stems from Andreev reflections' (elec-
tron=hole) at the N Sboundary, -and should per-
mit direct determination of the dressed Fermi
velocity vF„*=v,s'/Z„(~) from observed phases.
Since their preliminary estimate' v»* = 1.1+0.2
(Ref. 6) falls near the free-electron value v, o(Ag)
=1.39,' one might infer that such experiments ba-
sically measure the intrinsic (bulk) electron-
phonon renormalization in N.

Our more extensive measurements, acquired

When the superconducting half of a superconductor-normal-metal film sanchvich is a
strong-coupling superconductor, phonon structure due to the superconductor (Pb)—but
observed by tunneling into the normal metal (Ag)—provides a direct probe of the effec-
tive renormalization interaction in the normal metal. Unexpectedly, even fairly thick
Ag films (=350 A) backed by Pb exhibit effective renormalizations approaching that of Pb,
both in overall strength and energy dependence.

When the mean free path (mfp) l» in a normal- with thinner Ag films, suggest that the PE can
state (N) metal becomes comparable to the film cause substantial and progressive enhancements
thickness d» thin metal films N backed with a of effective renormalizations as d„(Ag) decreases
strong-coupling superconductor S yield ac tunnel- from 1000 to 100 A. Both the size and energy de-
ing characteristics containing phonon structure pendence of Re[Z„((u)] observed with our two thin-
attributable to S.' ' Here, N denotes a metal nest films suggest behavior approaching that of
which remains normal in bulk form, but may be- the Pb backing (ds =4000+ 500 A). These results
come superconductive in film form because of run counter to current PE theories such as those
the proximity effect (PE). The energy-dependent of. McMillan' and Arnold, ' which predict nearly
amplitude of such structure —reckoned relative to bulk behavior even as d~ approaches zero. De-
that observed when N is absent —oscillates with spite this difficulty, we will continue to describe
d„and with energy ~ roughly as exp[i@(~)], where our results in terms of effective renormaliza-
the complex phase tions, leaving open the possibility that other fac-

tors may actually be at work.
All junctions studied utilized Al counterelec-

trodes (CE), deposited on glass substrates (T
= 300 K), and natural oxide barriers grown by ex-
posure to air. Pressures remained in the mid-
10 '-Torr range and little time elapsed ( I sec)
between Ag and Pb evaporations. Formvar var-
nish prevented tunneling from all film edges.
Final film thicknesses were determined by Tolan-
sky interferometry.

Wolfram's model theory' for quasiparticle in-
terference (QPI) effects in M, -M, sandwiches
provides the basic framework for interpreting
our observations. The theory is founded on exact
solution of Gor'kov's equations for two spatially
uniform energy gaps &,~, =&s „(~)which may be-
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