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Devil's Stairs and the Commensurate-Commensurate Transitions in CeSb
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We have analyzed a simple model of a periodically modulated magnetic system. The
phase diagram includes multiple phase transitions between commensurate phases, simi-
lar to those observed in CeSb. We argue that our model, and CeSb, are possible candi-
dates for the "devil's stairs" behavior.

Many interesting physical systems undergo
phase transformations to periodically ordered
phases. The distinction is made between com-
mensurate phases where the wave vector describ-
ing the modulation can be formed by (simple) ra-
tional fractions of the basic vectors of the recip-
rocal lattice and incommensurate phases where
this is not the case. Usually, the periodicity
depends upon temperature or pressure. Because
of the coupling of the modulated structure to the
lattice there is a tendency for the wave vector
to lock in at commensurate values. The nature
of the resulting wave-vector-versus-temperature
curve has been the subject of many considera-
tions. Dzyaloshinsky' used a Landau-type argu-
ment to suggest that the modulated phase is al-
ways commensurate. On the other hand, Pok-
rovsky' has argued that an incommensurate phase
might exist under certain circumstances. Mc-
Millan' and Bak and Emery" have analyzed the
transition from an incommensurate phase to a
specific commensurate phase. The transition
was found to be continuous.

The most interesting and complicated behavior
for such systems has been found by Aubry. ' He
analyzed a simple one-dimensional structural
model in an external pressure and found that the
wave vector locks into an infinity of rational val-
ues. At each value the function remains constant
in a finite pressure interval. The resultant wave-
vector-versus-pressure curve is an example of
the "devil's staircase" as described by Mandel-
brot. ' In this paper we shall see that a similar
phase diagram may arise from a completely dif-
ferent model of a real magnetic system, namely
cerium antimonide (CeSb). Our model explains
in a simple way the main features of the com-
plicated phase diagram for this system.

From the experimental side, it has recently
been observed that the rare-earth magnet CeSb
undergoes several phase transitions between
various commensurate phases. ' The crystal
structure of CeSb is fcc. Below TN=16. 1 K the
spins are ferromagnetically alligned within (001)

planes, but periodically modulated perpendicular
to these planes. The directions of the spins are
also perpendicular to the ferromagnetic planes.
The periodicity just below TN is & lattice con-
stants, i.e. , it extends over N= 3 ferromagnetic
planes. When the temperature is lowered the
system passes through phases with periodicities
%=13, 7, 18, and 11 ferromagnetic planes until
at the lowest temperatures it ends up in a phase
with N= 4.

In order to shed some light at the mechanisms
driving this type of behavior, we have undertaken
a numerical study of a simple mean-field model.
Despite its simplicity it displays a surprising
richness of phase transitions when the tempera-
ture is varied. When constructing the model we
had the very interesting experimental behavior
of CeSb in mind, and the Hamiltonian is very
similar to those usually applied to analyze sim-
ilar rare-earth systems. However, no attempt
was made to reproduce the correct details of the
picture for this particular system at the cost of
simplicity, since the main purpose of this work
is to investigate the general features of modu-
lated systems. Our model includes three temper-
ature indePendent -parameters (one of which is
just a scale factor), and reproduces the period-
icities K=4, 11, 18, 7, and 13 in the same se-
quence as found in CeSb. However, by refining
our analysis, we find more and more stable
phases which become stable for smaller and
smaller temperature intervals. This is consis-
tent with the devil' s-stairs behavior.

Our model is defined in the following way:
Spine S =-, (which is the relevant value in the case
of the Ce ions in CeSb) are situated in an fcc lat-
tice and interact with near neighbor spins. The
Hamiltonian describing the system may be taken
to be of the form

K= —Q J&pS&'Sp&

where the summation is over pairs of spins. With-
in the mean-field approximation, which we shall
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adopt here, this Hamiltonian is replaced by the
simpler one

K MF
—-Q~P, S~, + 2+;H;(S„)

Here S,&
is the perpendicular spin component for

a magnetic ion in the jth ferromagnetic plane,
and H, is the effective field at each spin in this
plane. This field is given by the mean-field equa-
tion

(2)

where the summation is over the near-neighbor
planes, and the effective interplane interactions
Z(n) are the sums of the interactions between a
spin in a given plane and the spins in the nth
nearest-neighbor plane. These interplane inter-
actions are the parameters entering into our
theory. In principle, the mean-field Hamiltonian
may represent a much larger class of original
Hamiltonians than that given by (1). For exam-
ple, the inclusion of two-ion anisotropy which is
needed to stabilize the directions of the spins
within the planes does not alter the form (lb).
Also we believe that the choice 8 = 2 does not in-
fluence essentially the resulting physical pic-
ture. Similar models have been applied success-
fully to similar rare-earth systems with simple
ferromagnetic or antiferromagnetic behavior.

For given effective fields the average spins
(S,&) are calculated by the formula

ature is used. This setup is then used to calcu-
late effective fields, which again are used to cal-
culate a new spin configuration. Usually, self-
consistency is obtained after only a few itera-
tions. The average free energy per spin

F(N, T) =N ' Q —T ln Tr;(exp(-3CMF/T)) (4)
J=O

is then calculated. Here Tr; is the trace over
the six spin states for a spin in the jth plane.
This free energy is minimized when self-consis-
tency is obtained. At each temperature the sta-
ble periodicity is the one which gives the lowest
free energy. In principle, the calculation should
be performed for N going to infinity to allow also
an incommensurate phase. In practice we have
carried out calculations for N up to 23. %e be-
lieve that no additional significant insight can be
achieved by extending the numerical calculation
to higher values of ¹

Near 7'„ the mean-field equations can be solved
analytically. The stable periodicity here is giv-
en by the wave vector for which the Fourier trans-
form J(q) attains its maximum value, the corre
sponding spin configuration being purely sinu-
soidal. The parameters were chosen such that
this wave vector is between 3 and ~. Figure 1
shows our result for the following choice of pa-

- m=s/2

(S„)= Q m exp(H, m/T)
m= -s/2
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The problem is then to solve (3) self-consistently
with (2), which (surprisingly) turns out to be a
difficult task. For a ferromagnet or for a sim-
ple antiferromagnet there is only one pair of
equations to solve. For a modulated system,
however, there is in principle an infinity of
coupled equations since the spins in different
planes may always be different.

The calculation proceeds as follows. At each
temperature the constraint is imposed that the
spin configuration repeats itself after a certain
number of planes, N. For each N the mean-field
equations are solved numerically by means of an
iteration procedure. As the starting configura-
tion either a sinusoidal structure or the self-
consistent configuration for the previous temper-
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FIG. 1. Wave-vector —versus-temperature curves
as calculated for our two models (fu11 curve and dot-
dashed curve, respectively). The rational numbers
shown correspond to the main Fourier components.
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FIG. 2. Some stable spin arrangements. The curves
show the largest Fourier component in each case.

rameters:

J(0) = —j'(1) = 0,1240TNI J'(2) = —0,0874TN. (5)

The values of J(0) and J(1) may arise from an
antiferromagnetic nearest-neighbor- and a fer-
romagnetic next-nearest-neighbor interaction as
found experimentally for other rare-earth anti-
monides. ' There is little (or no) hope to calcu-
late these parameters from first principles.

The wave vector varies stepwise in a way simi-
lar to that observed in CeSb. ' The periodicity
changes from% =4 at T =0 toN = 13 at TN. In
between, the periods 11, 18, and 7 occur in the
same sequence as observed experimentally. Our
model, with this particular set of parameters,
does not reproduce the periodicity N =3 near T»
but the mean-field theory should break down in
this regime anyhow. In fact, a renormalization-
group argument may be applied to show that fluc-
tuations will necessarily drive the transition
first order at T„ in agreement with experiment. "

The stable configurations for the periods N =4,
7, and 13 are shown in Fig. 2 together with their
largest Fourier components. The spin arrange-
ment for the periodicity N =13 (q= ~) which is
stable near TN is almost sinusoidal. The struc-
ture for N =7 is rather distorted. This distor-
tion gives rise to the higher harmonics which
have been observed in the neutron scattering ex-
periments. '" The ¹4configuration is again
purely sinusoidal and the spins are almost fully
developed (1(S„)I = 2).

In addition to these experimentally observed
periods other periods become stable. The most
interesting behavior takes place near T = 0.4TN.
By increasing the maximum N we find more and
more phases, which show up on the borderlines
between the "main" stable commensurate steps,
thus increasing the number of steps. These new
phases are stable for extremely small tempera-
ture intervals only. For example, the N = 19
phase is stable in an interval &T =0.000003T„.

The appearence of new steps thus by no means
destroy the previous steps, and the curve does
not approach an incommensurate one. The peri-
ods show up in a rather unpredictable way. For
example, the period N =15 never becomes stable.

This picture is consistent with the devil's stair-
case' but differs from Aubry's result' in the sense
that certain periodicities do not become stable,
in agreement with experiment. Of course, there
is no hope to prove numerically (or experimental-
ly) that the devil's staircase is complete, i.e.,
that the number of steps is infinite. We have per-
formed calculations on several similar models
defined in terms of different values of the param-
eters. The general features remain the same for
a wide range of parameter values: We are able
to increase the number of phases by refining the
calculation. Because of the very general form of
our Hamiltonian we believe that the devil' s-
stairs picture is quite general. The reason that
it has not been more widely observed experimen-
tally is probably associated with difficulties in
resolving the fine steps. We suggest that an ef-
fort be made to investigate the details of tempera-
ture or pressure dependence of the wave vector
for modulated systems, such as the rare-earth
metals. More and more steps should appear
when a more and more refined experiment is per-
formed. In fact, the experiment by Fisher et al. '
revealed six phases whereas the experiment by
Rossat-Mignod et al." (which was designed main-
ly to study the field dependence of the phase dia-
gram) showed two or three phases only. An es-
sential condition for the devil's staircase is the
existence of metastable states with free energies
which are (infinitely) close to the ground-state
energy ("frustration"). These states appear here
as the solutions of the MF equations with unsta-
ble values of 1V. The frustration arises because
of a conflict in sign of the interactions. For Au-
bry's model, the devil' s-stairs behavior is the
result of interactions between incommensurate
structures. An experimental consequence of the
frustration is the "global hysteresis" where the
periodicity jumps between metastable values.
Experiments should be performed to look for
such hysteresis.

For certain values of the parameters, the sta-
ble structures are, of course, purely ferromag-
netic or antiferromagnetic, and the analysis is
trivial. We have also studied a model defined by

J(0) = —j'(1) = 0.1294TN, j'(2) = —0.0970TN,

J(5) = —0.0129T„,
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where we have forced the wave vector at T~ to
be q= &. In this case (Fig. 1, dot-dashed line)
there seems to be only one transition to a phase
with N = 4, and no new phases appear when N is
increased, in contrast to the devil' s-stairs be-
havior. However, by changing the parameters
slightly, the devil's staircase immediately shows
up again.

In conclusion, we have demonstrated that our
model exhibits multiple phase transitions between
commensurate phases when the temperature is
varied, despite the fact that the model includes
three temperature-independent parameters only,
and we can increase the number of phases by re-
fining the calculation. This is consistent with the
devil' s-stairs behavior. It would be interesting
to investigate our model analytically to find out
whether or not the devil's staircase is complete.
We also suggest that accurate experiments be
performed on periodic magnetic systems to
search for the stepwise behavior.

We would like to thank Dr. 8. Aubry for inter-
esting discussions on the devil's stairs, and Dr.
B. Lebech for explaining to us the experimental
situation for CeSb.
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Spin models with random anisotropic fields and random magnetic fields are studied.
It is shown that integral-index textural singularities of these fields act as disclination
sources and participate in destroying long-range ferromagnetic order. Half-integral-
index singularities give rise to frustration. The relation of these models to bond disor-
dered spin-glasses is discussed.

Frustration is generally believed to play a fun-
damental role in determining the nature of spin-
glass phases. The concept has, however, only
been defined' and studied"' for models where the
frustrations are properties of the underlying
bond structure. Recently spin models with ran-
dom magnetic fields'~ and with random anisotro-
pies" have been studied by several authors.
The results show remarkable similarities to

those found previously for bond-disordered spin-
glasses. An interesting and related feature of
these models is that long-range ferromagnetic
order does not seem to exist below four dimen-
sions."Our purpose here is to show that one
can indeed define frustration as an inherent prop-
erty of the underlying (random) fields. Frustra-
tion defined in this way has properties very simi-
lar but not identical to those discussed by Tou-
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