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and weak interactions for if the spontaneous
breaking of the weak-interaction gauge group pro-
duces a quark mass matrix with phase

then () =() +Q, where () is the strength of the bare
coupling bef ore spontaneous symmetry breaking.
It is possible, but not natural, to choose 8 = 0.
There are three natural explanations of why 8 is
so small. ' one is that the u quark is massless;
another is that there is a very light pseudoscalar
meson, the axion."Both of these possibilities
appear to be ruled out by experiment. ' The third
solution, which we shall pursue, is that CP is an

0 pp exp
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where E is the gluon field strength, preserves C
but does not conserve either P or T and hence
does not conserve CP. This term links strong

Permutation symmetry is imposed on an SU(2)I U(1) CP-invariant Lagrangian with
six quarks. The mixing a~i les of the b and t are determined: 6 decays predominantly to
u and a meson containing b should have a lifetime T&=10 " sec or less. A phase in the
gauge couplings of b and t causes nonconservation of CP in Ez, decays that is naturally
small. No violations of P and T invariance are induced into the strong interactions by (t)

= arg(DetM) at the tree level. One-loop corrections yield an upper bound of P & 10 '0(m, /
m, ) (~,/~, ) '.

Although CP is not conserved in Kl. - 2& decay
it was generally assumed to be an exact symme-
try of the strong interactions. Indeed, one of the
arguments in favor of the color gauge theory of
strong interactions was the automatic absence of Q =arg[(DetM„)(DetM~)],
large C-, I'-, and T-nonconserving interactions. '
The discovery of instantons and vacuum tunneling
has complicated this picture because the interac-
tion
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exact symmetry of the Lagrangian (i.e., 8 =0 ini-
tially) and the spontaneous breaking of the weak-
interaction gauge group induces a phase Q, which
is calculable and small. '

The problem of guaranteeing that the induced Q

be very small is quite delicate. CP-invariance
of the Lagrangian requires not only that 0 =0 but
also that the Yukawa couplings and Higgs coup-
lings be 1 eal. A single Higgs doublet trivially
gives f = 0, but also gives no CP-invariance viola-
tion in K~ decay. The solution we report on here
employs two Higgs doublets and a discrete permu-
tation symmetry in SU(2)~8U(1).

We work in SU(2)~ 8 U(1) with three quark doub-

lets, i.e., six quarks. The gauge couplings of the
quarks are clearly invariant under premutation
of the three doublets and we shall extend this in-
variance to the entire Lagrangian. To do so we
define the usual doublets as g„=(p»,n»), where
p, =a, b, c label the three doublets. The Combina-
tiong, =-~&3(g, +g, +g,) is invariant under permu-

tation of a, b, c. The orthogonal combinations
may be defined in a variety of ways. We find it
most convenient to define |t, = ~~3(g, + zg, +~'g, )
and g = ~&3((, +9 |I,t+ ~'g, ), where v = e""' is the
cube root of unity. When a, h, c are permuted, g,
goes into a multiple of ( . Thus (g„() trans-
form irreducibly under the symmetric group S,
and the 3'. = 6 matrices of the representation may
be easily constructed. '

This fixes the S, properties of the left-handed
quarks we shall make analogous assignments:
(p+»p „)and p» form a doublet and singlet of
S» (n+z, n z) and n» form a doublet and singlet
of S3 . As al ready mentioned, a single Higgs field
will not give CI' nonconservation. %Ye therefore
use two Higgs fields; both are SU(2) doublets and
they form an S, doublet (p+, p ). All of these S,
doublets transform just the same as ((„g).

One dividend of this discrete symmetry is that
it greatly restricts the number of possible coup-
lings. The most general SU(2)~ 8 U(1) 8S,8 CP-
invariant Yukawa interaction is

(3)

(4)

2„'"=f(gy n++&+g p+n ~)+g(g p +g+y, )n»+hg, (y n, ~+p+n &),

for the nz quarks where f, g, h are real and positive. [Note that it is thef coupling that restricts the
invariance to the discrete group S, rather than the continuous group 0(2).] The most general interac-
tion of the P~ quarks is

~, " =~'(0 ~ P. +O.~.p, )+f'(0 ~.+4.~ )p:+h't. (~.p. +~ p ~).

v, 0 gu n+

(n, n+, n, )I, 0 fv gv+
~

n

(p yp+ ypo)1,

(h v,
gV+ fV P
a'v 0

(The interchange f-g', g-f' is for later conven-
ience. ) It is easy to assay the predictive power
of this scheme. There are six Yukawa constants
which we shall use to fit the six quark masses.
There are two vacuum expectation values, whose
ratio will be used to fit the Cabibbo angle. Once
these parameters are fixed, the phase Q of the

quark mass matrix is determined. In addition,
the b and t mixing angles will be predicted in
terms of the quark masses and the Cabibbo angle.

Let v+ =(p+ ' ) and v =(p ' ) be the vacuum ex-
pectation values of the neutral Higgs fields. The
elements of the mass matrices M„andM~ for the
negative and positive quarks, respectively, may
be read off from

I These matrices have some remarkable proper-
ties. First note that

DetM„=-fgh[(v+)'+(v )'],
DetM~=-f'g'h'[(v, )'+(v )'].

DetM„and DetM~ have equal and opposite phases
and hence Q =0 in tree approximation regardless
of the vacuum expectation values. This is already
a nontrivial result and works only because the
Yukawa constants factor out of both determinants. '
Generally one-loop corrections to the mass ma-
trices would be expected to give P = G~~'/4m'.
Whenm ism, or m, this gives /=10 ' or 10 ',
which gives much too large a value for the elec-
tric dipole moment of the neutron. In this model
there is, however, an additional suppression. Be-
fore discussing this effect we will first discuss
the model in tree approximation.

SymmeA'y breaking. —The Higgs potential will
be invariant under SU(2) 8 U(1) S,8 Cp except that
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we allow explicit soft breaking of S,:
~ =, f(P.v")(P v ) -(P v.)(P.~ )]+&.[P.~,+0 ~ -~']'

+A.,[P p, +P,p -v'sinp cos&]'+A.,[i(((() p, —P, (I() )-v'sinp sin5]'. (8)

The two quadratic terms proportional to simp explicitly break S3 We take all A.
&

0. Minimization is
trivial and gives

v+ =v cospp, v =ve sin~p.
1

Had we imposed S, on the quadratic terms in (8) then u would be zero." We will be interested in the
case v,»v 0 and will choose v+ positive real.

Quark masses and mixing angles. —The quark mass hierarchy will require that f» h»g and f' » ii'
»g'. It is easiest to diagonalize (5) and (6) in the limit g =g' =0 (i.e., m~ =m„=0)and then perturb in
g and g'. For the positive quarks the diagonalization yields m„=g'v+, m, =h'i)+, and m, =f'v+. The
negative quarks require more care because the combination (f/h) ~v /v+ ( arises in the diagonalization.
(Recall that f» h but v «v+. ) It is useful to define tan8 = (f/h) ~i). /v+ (. Then we have m„=gv+cos8,
m, =ho+/cos8, andm, =fv+, The charged current coupled to physical quarks is then

.os8 sint
J "=(uct) y"A s ~, with A = —sin8 cos8

(5)z ((h//) sine{1+ii) (}i//) co88(tan'ii —6}

—(I /y) tan8)
(i //) &'

where b, =e "~tan8(h/f )." Note that Ii/f = cos8(m, /m, ) from above so that the only free parameter is
the phase angle 5.

Let us now make a few observations about A: (i) Obviously Cabibbo universality holds and 8= 8c.
This is a nontrivial result. (ii) The b quark decays predominantly into u with a mixing angle m, sin8c/

A meson containing & should have a lifetime

7'z = ~(m(}/m, sin 8c)'r &(m &/mi))'.

This is well belch the experimental upper bound" of 5x10 ' sec for m& in the range 4 to 10 GeV. For
example, with m(/m, =25 this gives 7i) =2 x10 " sec for mi) =4 GeV and considerably smaller for larg-
er m~. (iii) CP nonconservation in the K,K~ mass matrix arises from the phase on the t - s gauge coup-
ling. Letting I» be the off-diagonal term in the mass matrix, one finds"

III&&2 ~,~' m, ' m, m, &''
l sin8csin35 ln ' -1+

m( j — me m(, tBej
The experimental value of e is 2X 10 '. Obviously this result depends sensitively on the mass of 5; in
particular m~/m, =10 gives good agreement. Note that we refer always to the masses in the Lagrang-
ian, not to the constituent masses. There may be considerable uncertainty in the value of mmmm, ,
e.g. , estimates of m, /m, range from 3.5 to 7.V.'
a$=2 via Higgs exchanges. —Since there are two Higgs doublets one must check for strangeness-

changing neutral Higgs exchanges. Rewriting (2) in terms of the physical quarks gives

~]~s[=), =dr, &sf (e p ' —lu /v+I P+') +sz,de sin8c(I/)+(') .
To obtain the effective &S =2 Hamiltonian, we must diagonalize the Higgs-meson mass matrix to find
the eigenstates. The end result, to leading order, is

(- )2 gm tan HER ( )2 Gym' tan 8C

H~ H2

m'here MH, , are Higgs meson masses and R...are products of ratios of Higgs quartic couplings, and
are typically O(1). Two features of the above expression are worthy of note: The first is that there is
an overall )v /v+(' suppression factor and the second is that H~~-, ' is real so there is no contribution
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to the imaginary part of the R,K, mass matrix and hence no CP-invariance violation due to Higgs ex-
change.

One l-oop corrections to g.—We are now equipped to estimate radiative corrections to the quark
mass matrix. This is most easily done by considering corrections to (5) and (6). First there are sin-
gle loops involving y or the & boson. These involve no phases and are just a common multiplicative
renormalization off, g, and h. There are no one-loop diagrams containing W' since the right-handed
quarks are all SU(2) singlets.

Thus only single Higgs loops can modify Q. These may be analyzed according to whether they cor-
rect the t, entries, the n entries, or the zero entries in (5) and (6). Because of the interplay of SU(2)
8 U(1) and S, invariance the corrected M„has the form"

fu, (1 +a,(")

M„= -fe a, '

au (1+a "')

fu a,"'-g.v. (1 i.a "') )
fv (1+a ') gu, (1+a, ')
av, (1+a,(')) —(ga/f)v aP )

The a ~ are all real constants whose magnitude is typically

a & + (f yf )zp /16n' MH --+ (f +f' )/1287r2,

where the occurrence off or f' depends on whether positive or neutral Higgs scalars are propagated.
The corrections to the positive quark masses are analogous but with j =4, 5, 6. Remarkably, the lead-
ing contribution to P is then

Even if there are no canceQations at all among the twelve constants a, ', this gives
3

, (f'+f") = sin36 ~128&' v+

The additional suppression [ v /v+ ~' yields quite an acceptable value of p:

~(m '+I ')(™'sins
)

-lo "( ') ( ')
Note that we have consistently made pessimistic estimates, i.e., no cancellations, and have retained
even the Higgs mesons that are gauged away.
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It is shown that the path-integral measure for gauge-invariant fermion theories is
not invariant under the ys transformation and the Jacobian gives rise to an extra phase
factor corresponding to the Adler-Bell-Jaekiw anomaly. The derivation of "anomalous"
%ard-Takahashi identities by means of the variational derivative can thus be made con-
sistent in the path-integral formalism.

@=ir'Dc+ r'Da = r'D~+ r"D-a ~

%e consider the fermions in the n-dimensional
representation of the gauge group SU(n):

iA
p

——gA p' g'

with

[T', T'] = if„,T', Tr(T' T") = (—,') 5",

(2)

The derivation of the "anomalous" chiral Ward-
Takahashi (W- T) identities in the path-integral
formalism has not been transparent in the past,
as the "anomaly" term, which is seen only after
the one-loop renormalization, had to be added to
the action by hand. We here show that the path-
integral measure for gauge-invariant fermion
theories is not invariant under the y, transforma-
tion and it gives rise to an extra phase factor cor-
responding to the anomaly. The derivation of %-
T identities can thus be made consistent in the
path-integral formalism.

W'e start with the gauge-invariant Lagrangian

8= y(ig —m)y+(-,'g') Tr F„,E""

suitably continued to Euclidean space. The opera-
tor p=-y"(9&+A„)after the Wick rotation x'--ix'
and A, -iA4 becomes a Hermitian operator

The variation of (1) under the r, transformation

«x) —exp[in(x) y]«)x,

y(x) —(((x)exp [in(x) y, ]

gives rise to

2 -2 —s„n(x)gy "y,y 2min(x) -yy, g

(4)

for an infinitesimal parameter n(x).
To define the functional integral precisely, we

first expand «x) and g(x) as

«x) =Q„a„q„(x),
(((x) =P„y„(x)t 5„

in terms of a complete set of eigenfunctions of
the Hermitian operator P, (2), in Euclidean
space:

(6)

Pq„(x)=Z„y„(x),
fq„(x)ty (x)d'x= &„

The coefficients a„and b„in (6) are the elements
of the Grassmann algebra. We note that «x) and
g3x) are independent quantities in the classical
level. (In the chiral form, g~ and g~ are ex-
panded in q~ and (o„t, respectively. ) The func-
tional-integral measure is then defined by

and

F p„=9pA p- B„Ap+ [A p, A„].
d. =-rr. [»„(.)]~~~.) ~«.)

=II„[SA„(x)]Q„dbda
„
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