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Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories
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Quantum stochastieity (the nature of wave functions and eigenvalues when the short-
wave-limit Hamiltonian has stochastic trajectories) is studied for the two-dimensional
Helmsholtz equation with "stadium" boundary. The eigenvalue separations have a signer
distribution (characteristic of a random Hamiltonian), in contrast to the clustering found
for a separable equation. The eigenfunctions exhibit a random pattern for the nodal
curves, with isotropic distribution of local wave vectors.

The current interest in classical systems predictions. For the Hamiltonian to be studied,
whose Hamiltonians have stochastic trajectories we choose a free particle (in two dimensions) con-
leads naturally to the question of how this sto- fined in a stadium (or racetrack) boundary (see
chasticity manifests itself in the corresponding Fig. 1). This system is particularly simple clas-
quantum system. In a broader context, one may sically, "since it is stochastic for all nonzero

inquire into the nature of the solutions of wave values of the aspect ratio y =- a/8 (a being the half-
equations (arising, e.g., in plasma physics, op- length of the straight side, R being the radius of
tice, acoustics, oceanography) whose ray trajec- the semicircle), with the degree of stochasticity
tories (WKB solution, geometric optics) are sto- increasing (see Fig. 4 of Ref. 14) from zero at y
chastic. '

Studies in this area have considered either
time-dependent Hamiltonians with one degree of
freedom, ' ' or time-independent Hamiltonians
with two degrees of freedom. In the latter case,
the work of Percivale and Pomphrey' indicates
that the eigenvalues are sensitive to parameter
variation, while }3erry~a, s ]3erry and Tabor~ao an
Zaslavskii" predict the following: (1) The dis-
tribution of successive eigenvalue spacings is
peaked about a finite value, as it is for a random
matrix, "rather than having its maximum at zero
separation, which represents the clustering of FIG. 1. Nodal curves [g(x,y) =0] for one quadrant of
eigenvalues characteristic, of integrable Hamilton- the (odd-odd parity) eigenfunction with eigenvalue k

ians io (2) The coarse-grained Wigner function
——50.158, in the stadium with dime&sio&s a =R = 0.665

(or local Foxier transform) for an eige&mct'on (area of quadrant=sr/4). The rel~ti~e ««»~y of th
eigenfunction is -10, except in the strippled band

is isotropic" in R space for any position in %
along the boundary. The nodal curves must be ortho-

SPace, in contrast to the ordered anisotroPy char gonal to the boundary there are no crossings in the
acterizing an integrable Hamiltonian. '" interior. The orientation of the curves appears quite

In this Letter we report our test of these two random.
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=0 (the circle) to a. flat maximum near y =1 (the
stadium of our Fig. 1).

The quantum problem" for a free particle is
just the Helmholtz equation (&'+ k')$(%) =0, with
the energy eigenvalue E =k' for 5'/2m =1~ The
boundary condition ( =0 at the stadium "wall" is
the same as for a vibrating membrane with
clamped edge. To solve the Helmholtz equation
numerically for its eigenvalues and eigenfunc-
tions, at fixed aspect ratio, we use the algorithm
of Lepore and Riddell. " For a reliability test,
we use the circle (y =0) and the known mean den-
sity of eigenvalues" for y =0.

Because the Hamiltonian is invariant under re-
flection in x or y, we consider only the set of
eigenfunctions of odd-odd parity, i.e., g = 0 at
the boundary of the stadium quadrant of Fig. 1.
For nonzero aspect ratio, we adjust the absolute
dimension to keep the quadrant area constant (at
m/4), so that the asymptotic mean level spacing
is independent of y.

In Fig. 1 we exhibit a typical eigenfunction, cor-
responding to the eigenvalue k =50.15-8, at y =1.
The nodal curves are seen to be irregular in di-
rection, verifying the second prediction of Berry.
Their separation is roughly regular, represent-
ing the half-wave length w/k. There are no nodal
crossings in the interior, "since saddle points at
the special value g =0 would occur only at special
y values. We have not computed the coarse-
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grained Wigner function, since we feel that the
qualitative question of local isotropy can be judged
by eye.

The distribution of eigenvalue spacings ~E is
one statistical measure of the spectrum. Histo-
grams are shown in Fig. 2 for the circle, and in
Fig. 3 for the (y =1) stadium. . They are seen to
be strikingly different, in confirmation of the
first prediction of Berry and Tabor. For the cir-
cle, the distribution is roughly exponential; small
spacings are the most probable, the smallest
found being AE =0.003 (!); large spacings (sever-
al times the mean) are also found. Hence the
eigenvalue spectrum is highly clustered. For
the stadium, on the other hand, small spacings
are less probable, the smallest being 4E = 1.69;
also large spacings are improbable. The spec-
trum exhibits apparent mutual repulsion of eigen-
values, as predicted by Zaslavskii, "near the
mean,

In conclusion, we have shown that the eigen-
value spectrum and eigenfunctions of a linear
operator whose (short-wave-limit) rays are sto-
chastic exhibit, respectively, mutual repulsion
of neighboring eigenvalues and random direction-
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FIG. 2. Distribution of (odd-odd parity) energy level
spacings, for the range 50 & k & 100 (2500 & E & 10 000),
for a circular boundary. The histogram bin size is 4.
Note that the smallest spacings are the most frequent,
indicating clustering.
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FIG. 3. Distribution of (odd-odd parity) energy level
spacings, for the range 50 & k & 70 (2500 &E &4900), for
the y = 1 stadium boundary. Bin size is 4. For ~&4,
detailed histogram with DE =1 shows absence of separa-
tions with &E & l. Energy eigenvalues are computed to
an absolute accuracy+ 0.2.
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ality of nodal curves.
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stein, Ya. Sinai, N. Handy, and R. Stratt, and
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the U. S. Department of Energy under Contract
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and weak interactions for if the spontaneous
breaking of the weak-interaction gauge group pro-
duces a quark mass matrix with phase

then () =() +Q, where () is the strength of the bare
coupling bef ore spontaneous symmetry breaking.
It is possible, but not natural, to choose 8 = 0.
There are three natural explanations of why 8 is
so small. ' one is that the u quark is massless;
another is that there is a very light pseudoscalar
meson, the axion."Both of these possibilities
appear to be ruled out by experiment. ' The third
solution, which we shall pursue, is that CP is an

0 pp exp
if 64 2 spvafP

where E is the gluon field strength, preserves C
but does not conserve either P or T and hence
does not conserve CP. This term links strong

Permutation symmetry is imposed on an SU(2)I U(1) CP-invariant Lagrangian with
six quarks. The mixing a~i les of the b and t are determined: 6 decays predominantly to
u and a meson containing b should have a lifetime T&=10 " sec or less. A phase in the
gauge couplings of b and t causes nonconservation of CP in Ez, decays that is naturally
small. No violations of P and T invariance are induced into the strong interactions by (t)

= arg(DetM) at the tree level. One-loop corrections yield an upper bound of P & 10 '0(m, /
m, ) (~,/~, ) '.

Although CP is not conserved in Kl. - 2& decay
it was generally assumed to be an exact symme-
try of the strong interactions. Indeed, one of the
arguments in favor of the color gauge theory of
strong interactions was the automatic absence of Q =arg[(DetM„)(DetM~)],
large C-, I'-, and T-nonconserving interactions. '
The discovery of instantons and vacuum tunneling
has complicated this picture because the interac-
tion
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