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We propose a method to calculate the unbinding of a gas of thermally activated vortex
pairs above a critical temperature T 2D lying beloved the bulk transition temperature T B cs
of thin superconducting films, as a function of temperature and applied magnetic field.
We hence determine the phase diagram of the films and their resistivity as a function of
field and temperature.

It has been pointed out by Beasley, Mooij, and
Orlando' that thin-film dirty superconductors
whose normal-state resistivity is an appreciable
fraction of a "maximum metallic resistivity" (of
order 34 000 0 per square) have a, transverse
penetration depth A. ,= A'/d (with A. the London pa-
rameter and d the film thickness) which can be
comparable to the sample size, g. Under these
conditions, thermally excited vortex pairs inter-
act via a two-dimensional Coulomb force law

given (for r «&&) by

U, , = -2 q, q, ln(r, , /$),

where q' =(p, /4&)' h. ~
' measures an effective

charge for the vortices, y, is the flux quantum
(hc/2e), a,nd $ is the core radius. As shown by
Berezinskii, ' and by Kosterlitz and Thouless, ' a
gas of thermal topological excitations of this type
is expected to have a finite condensation energy
temperature, T,D& T&cs below which the pairs be-
come bound, Moreover, since free vortices will
be swept across the sample by a finite current,
these superconductors should exhibit a finite re-
sistivity for T(TBcs, decreasing to zero as T

The purpose of this Letter is to establish the
phase diagram of this class of two-dimensional
superconductors in the magnetic-field-tempera-
ture plane, and to give a method of calculation of
the dependence of their resistivity on tempera-
ture, applied field, and current. The same meth-
od enables us to calculate the magnetization of
the superconducting film.

The effective Hamiltonian of a system of vor-
tices in a superconducting film may be written,
following Pearl, 4 as

X=N p,, + U, ~Psgn(q, . ) ~'

+s Q U;, +Hgm, ,

where N is the total number of vortices, po is
the chemical potential associated with the vortex
core (go= d$' H, '/8), Uo is the magnetic energy
associated with an excess of vortices of a given
sign, which is given by

U, = q' ln(R/(), (3)

M = (q, /18~)(R'/~, ) . (4)

In the spirit of the Kosterlitz and Thouless theo-
ry, s under conditions of large po (leading to a low

density of vortex pairs) a distance-dependent di-
electric function e(r, T) may be defined in the
temperature range 0 (T (T,D', in terms of which
the transition temperature T~ can be defined as

R'BT,D= q'/2 e(~, T,n) (5)

with e(~, Tg of order unity. Writing the effec-
tive charge of the vortex in terms of the film pa-
rameters, Eq. (5) can be expressed as KBT»
=(y,/4v)'/2A, ~ which, as shown by Beasley,
Mooij, and Orlando, ' leads to an expression re-
lating T»/T &os to )he ratio of the normal-state
resistivity of the film to the "maximum metallic
resistivity. " (E.g. , they find T»/Tscs =0.75 for
a film with R~= p„/d-8000 0, where p„ is the
normal-state resistivity. )

In order to discuss the effects of temperature
and applied field on the superconducting proper-
ties of thin films, we first look at the phase dia-
gram of a system described by Eq. (2). At T=0,
the field H„ for which the film becomes unstable
to the nucleation of a single vortex is given by
the ratio (p,, + U,)/m. Using Eqs. (3) and (4) we
obtain the size-dependent value H„=4@ 'ln(R/
$), which is of order 10 ' G for R-1 cm and $
=—20 A. For 0(T(T~, the nucleation energy for

and m; is the paramagnetic moment of the ith vor-
tex, m, =msgn(q, ), where
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a single vortex will be lowered because of the
finite polarizability of the gas of bound, thermal-
ly excited vortex pairs, which interact with the
nucleated vortex through the third term of Eq.
(2). With the resulting correction to the magnetic
energy U„we then get'

V= V, +(2~) '
J, d'~~ 'q-'[~ '(~-) - I], (6)

which implies V= q'In(R/$)/e(~, T). We there-
fore obtain a renormalized critical field H „
such that H„/H„= e '(~, T) for T ~ T,D, If the
effects of the finite sample size on the dielectric
behavior predicted for the infinite system are
ignored, this quantity may be expected to dis-
play the same universal behavior near T» pre-
dicted for the superfluid-density jump in the neu-
tral superfluid. ' At T,D, the vortex pairs of
largest separation become unbound and it will be
argued below that the resulting screening will
lead to a reduction of H„ to zero for T o T,D.
Finally, as the field is further increased, the
BCS superconducting order parameter is re-
duced to zero at the depairing field B„, leading
to the phase diagram shown in Fig. i.

In the figure, Phase I denotes the weakly dia-
magnetic superconductor with almost no free
vortices present. ' In this phase, vortex depair-
ing can occur in the presence of a current, thus
leadirig to a resistivity varying as a power of the
current. ' This mechanism is analogous to that
found in the 4He films. ' Phase II corresponds to
a superconductor with a superconductor with a
screening vortex plasma. The finite polarizabil-
ity of this phase leads to a strong temperature
and field dependence of the resistivity. As Phase
III is approached from below the phase boundary,
amplitude and phase fluctuations of the BCS con-
densate become important, and above the depair-
ing field H~, one obtains a normal meta. l.

For applied fields larger then H, ] for T+T»,
or in all finite fields at T & T~, the superconduct-
ing film will always have finite density of un-
bound vortices, n,(T, H) with parama. gnetic mo-
ments parallel (+) or antiparallel (-) to the field,
respectively. These free vortices will be swept
towards the film boundaries by a current flow,
thereby leading to a finite resistivity p(T, H)
which can be written as'

p(T, H)/p„=2~]'(n, +n ).
Therefore, in order to calculate the resistivity
and magnetization of the superconductor in the
vortex-plasma region of the phase diagram, we
need an expression for the temperature- and

T2 D BCS

field-dependent densities of unbound vortices.
In order to calculate the density of free vor-

tices, we first notice that in Phase II the vortex
plasma will exhibit screening behavior at dis-
tances of the order of the screening length z '
which, in linear-response theory, is given by

~'=(2n/Z, T)(n, +n )q'.

Consider now the energy 2U", associated with

injecting a pair of vortices into the film whose
separation is much larger than v '. Since each
vortex of the additional pair will only polarize
the bound-pair component of the plasma up to a
distance ~, we postulate, in a similar vein as
Kosterlitz and Thouless, ' that U scales with & '
in the low-density limit as

V"= [q'/e(~ ', T)]In(c/~])

with C an arbitrary constant. %e now show that
in zero applied field, Eg. (9) leads to the free-

FIG. 1. Phase diagram of a bvo-dimensional super-
conductor (not drawn to scale). Phase I denotes the
weakly diamagnetic superconductor with almost no free
vortices present. H, &

is the nucleation field appropriate
to a thin film (in the region of 10 ' Oe}. Phase II con-
tains a screening vortex plasma. Phase III corresponds
to the normal state, with 0,2 the depairing field (of
order of kilo-oersteds). Inset: Solution of Eqs. (14)
and (15) for H= 0 and in the charging limit, II »+crossover
The parameters used were x=0 [see Eq. (11)] and
2e BI'0 =0.95. n H

= 2FI/[nR H (0) ] .
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vortex density found by Kosterlitz from renormal-
ization-group arguments. ' This follows by as-
suming that as T- T~', e(z ', T) varies as e(~,
T2D)(1+x[(T/T2D) —1]' '), where x is a numer-
ical constant which will, in general, be expected
to depend on the bound-vortex density (i.e. , po).
We then calculate n+=n = —,'n free self-consistently
in the zero-field limit as

n „„=2( 'exp(-Py. ,) exp(-PU")

which, together with Eq. (9), yields

n f -= 2('[exp(-&P. )]"'",
where v(T) = 1/(f+xf'~') with &= [(T/T,D) —1] and
pa= @0+in(C /w). Our scaling postulate (9)

p,h„h —q'(z, —n )(2vR' ln(R/() —J d'r ln(r/$)).

or equivalently

V,„„,, =-q'(, — )-,'(3 R') 1 (R/~) .
Using Eqs. (3), (9), and (12), we then obtain

U, = pa+ U"+mII+m~M,

therefore leads to an essential singularity for
nq„, at T», of a form which crosses over from
Kosterlitz scaling' at t -0 to Zittartz scaling'
for tax'.

In the presence of an externally applied mag-
netic field, the energy required to inject vortices
with paramagnetic moment parallel to the field
(+) will be lower than that required for antipar-
allel (—) vortices, resulting in a net imbalance
n, -n &0 for all nonzero fields, leading to H
= 0 at T & T». Although the field of each vortex
is shielded locally within a distance ~ ' the net
paramagnetic moments add up over long distanc-
es. Hence, in analogy with the charging up of the
Coulomb gas, an extra contribution to the energy
needed to insert a +vortex into the field will now
be given by

(12)

where M= vR'(n+ —n ) measures the vortex imbalance and m~= —,'(3q') ln(R/g). Writing n, = p'exp(-pU)
we can then calculate the magnetization and free-vortex density for the superconductor, which are
given by the solutions of the pair of self-consistent equations

M= wR2n f„,sinhp(mV —m~),
nf„, =2] '[exp( —pp, ) cosh/(mH-m~M)]'~ ~,

valid for T& T,D. From these equations we see
that for small fields the thin-film diamagnetism
is reduced exponentially with H until a cross-
over region is reached:

+ ciossover =+ca ln — ln

Beyond H,~«v« the compensation of the diamag-
netism by injected vortices will be limited by
the charging effects described in Eq. (12) and
for large fields (but still «H~) will take the
asymptotic form discussed by Pear1..4

The increase of free-vortex density caused by
the presence of an external field also leads to a
strong dependence of the film resistivity on the
applied field, a fact that is observed experimen-
tally, 'o and, in particular, exhibits a strong tem-
perature dependence, due to the stimulated un-
binding of the bound vortex-antivortex pairs,
which explains the character of the observed de-
pendence of resistivity on weak applied magnetic
fields (see inset of Fig. 1). Further details on

(15)

! these will be given elsewhere.
In conclusion, we have shown that thin super-

conducting films display novel behavior when
their transport and magnetic properties are ana-
lyzed as a function of temperature and magnetic
field, thus enlarging the range of phenomena gen-
erated by topological excitations in neutral super-
fluzds
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The M& 4 soft-x-ray appearance-potential spectrum of Yb203 does not show the intense
structure characteristic of the lighter rare earth e-lements even though a single 4f vacan-
cy exists in Yb203. This indicates that the strong ~& 4 spectral response of each rare-
earth element previously measured using the soft-x-ray appearance potential technique
is determined primarily by the availability of vacant 4f atomic states to accept both the
excited d electron and the incident electron.

Recently measurements have been made' "of
the electron-excited soft-x-ray emission spectra
of the rare-earth elements. Characteristic of
these investigations have been the intense signals
for the M„, and Ã„, spectra. The x-ray emis-
sion spectra of La and Ce measured by Liefeld
and co-workers' ' revealed a dramatic resonance
in bremsstrahlung radiation when the energy of
the incident electron was comparable to the ex-
citation threshold for the M, and M~ core-level
transitions. Harte, Szczepanek, and Leyendecker'
showed that the strong structure in their La and
Ce data, obtained using the soft-x-ray appear-
ance-potential (SXAP) technique, was a manifes-
tation of this same bremsstrahlung resonance.
The interpretations given of the M„4 SXAP spec-
tra of other rare-earth elements indicates wide
variation in the extent to which this resonance is
assumed to contribute to each emission spectrum.
Our measurements of the Yb,O, M„4 SXAP spec-
trum indicate that the bremsstrahlung resonance
is the dominant contribution in the lighter rare-
earth spectra.

Wendin" has proposed that, for elements in
which a localized excited level exists at energies

near the threshold of a characteristic core ex-
citation, there are three competing transitions
which determine the SXAP spectra. The scatter-
ing of the incident electron into this empty f state
[process (a)] gives rise to the normal brems-
strahlung peak. In the second process [process
(b)] an intermediate state consisting of the scat-
tered incident electron in a localized atomic 4f
state together with a second 4f electron excited
from an atomic M state, relaxes via photon emis-
sion into a final state identical to that of process
(a). The exchange interaction involving the Sd
hole and two 4f electronics splits the intermedi-
ate-state energy, causing a multiplicity of reac-
tion channels connecting initial and final states.
The addition of the transition probabilities asso-
ciated with these channels together with that of
process (a) produce a transition resonance. The
third [process (c)], is the inelastic scattering of
the incident electron into an itinerant-electron
state accompanied by the excitation of an atomic
Sd electron into a localized 4f state. The strong
exchange interaction involving the excited 4f
electron and core hole has been shown by Sugar"
to lead to considerable multiplicity in the process
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