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The Christoffel elastic equations are solved for long-wavelength elastic waves of arbi-
trary direction in cubic crystals, and exact explicit closed expressions are obtained for
the phase and group velocities and displacement amplitudes T. he velocity expressions
that hold in the special directions are shorn to follow from the general result. The prob-
lem of determining the elastic constants from the phase velocities in a general crystal-
lographic direction is discussed vrith particular reference to BrQ1ouin scattering.

The propagation of plane elastic waves in crys-
tals is governed by a set of three simultaneous
homogeneous equations, known as the Christoffel
equations, for the components of the displacement
amplitude u:

(1/ ~a pv 5 ~s)Q s 0
y

where I „8 are the Christoffel stiffness coeffi-
cients and p is the density of the material. The
phase velocity v is determined by the vanishing
of the determinant of the coefficients of this equa-
tion. Exact explicit closed expressions for v

have, in the past, only been available for situa-
tions where symmetry conditions allow the secu-
lar determinant to be partially or completely fac-
torized. Where factorization has not been pos-
sible, as is generally the case in cubic crystals
except where the wave vector % happens to lie in
a mirror plane, ' investigators have resorted

either to numerical procedures' or a variety of
approximations such as Houston's method, ' se-
ries expansions, ' and approximations valid near
to principal symmetry directions. ' There has
been particularly wide use made of these methods
in cubic crystals for the purpose of calculating
properties such as Debye specific heats, ' second-
sound velocities, ' and phonon-focusing effects. '
The exact velocity expressions which we derive
below, while bearing some relation to formulas
given by Philip and Viswanathan, ' are much more
compact and should, we believe, greatly facilitate
calculations on many aspects of elastic waves in
cubic crystals. It is also hoped that the results
presented here will stimulate ultrasonics and
Brillouin scattering experiments divorced from
the special directions.

In the case of cubic symmetry the secular equa-
tion for elastic wave propagation takes on the
form

(C» —C«)n, 2 —ti (C,2 +C«)n, n2 (C» + C«)n, n s
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where C», Cy2 and C44 are the conventional elastic constants, n„n„and n, are the direction cosines
of %., and p =pv —C« ~ Expanding this determinant results in the following cubic equation for tt:

p' —(C„-C„)p'+ [(C„+C„)KS]p —(C„+2C„+C«)K'Q =0,

pv, '=-,'C, +-,'C, (1 —aS) 'cos(g+-,'~j), (4)

where K = C» —C» —2C«, S =n, 'n, '+n, n, ' +n, n, ',
and Q =n, 'n, 'n, '. In solving this equation we fol-
low the standard method" of carrying out a linear
transformation on p to eliminate the quadratic
term, and then expressing the roots in terms of
trigonometric functions of the coefficients of the
remaining terms. The results are conveniently
expressed in terms of a redefined set of "elastic
constants" C, =C„+2C„,C, =C„—C„, and C3
=K/(C, i —C„):

where f = —,
' arc cos[(l —&aS+bQ)/(1-aS)' '],

a =3C,(2- C,),
b ='-,' C,'(3 —2C,).

Three velocities are generated as the polarization
index j takes on the values 0, j., and 2. One can
visualize these solutions in terms of a geometri-
cal construction consisting of three "phasors" dis-
placed at 120' with respect to each other. This
construction provides a vivid demonstration that
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as long as g remains small (or only slightly ex-
ceeds 120' or 240' since it is a multivalued func-
tion) there is a clear separation between, on the
one hand, the quasilongitudinal velocity v„and
on the other, the slow (v, ) and fast (v, ) quasitrans-
verse velocities. In fact, P is confined to less
than 30' in all but a few highly anisotropic crys-
tals, notably Rbar, RbI, FeS„and KBr for which
—,
' &C, &1. Even in these cases g only exceeds 30'

Pg
1 ~

712 Pl s3

T,.-3,2C, T,.-3 'C T, -3 2C '

when% lies in the close vicinity of a (110) direc-
tion. In the (100) and (111)directions P vanishes
whatever the value of C,. For all known crystals
C, &1 while C, =0 corresponds to elastic isotropy.
If C~ were to be greater than 1 the longitudinal
velocity would, in certain directions, be less
than one or both of the transverse velocities.

By substituting for pv in Eq. (1) one readily
obtains that the components of the displacement
amplitude u,. are in the proportion

TJ =1+ 2(1 —aS)"'cos(g+ 2&j).

The group velocity V, can be calculated from the tensor elastic constants C„8&(; and the normalized
amplitudes e,-~ by means of the equation"

V c(=(Pvj) Cc(t)),()elise yPlg.

In the case of cubic symmetry this formula reduces to the expression given by Miller and Musgrave':

n„C„ej '(pv, . ' —C„)~)a= + ~

pv~ Pl ~PV~
(7)

Alternatively one can obtain V~ directly from Eq. (4) by differentiating the frequency ~~ =kv~ with re-
spect to the wave vector:

YT, =8z, /8%, ..V,. = 8&v,./8k „,
which yields the following expression for the x component of V;

V;„=n,[v, +A,.(l —2S-n, ') +B,n, 'n, '(1-3n,2)],

where

and

CC(2 —C), ,( )--,'S, iS) is(2 + ,*sjs) sass(2+ssj-)

Ipv, (1 —aS)' sin(3() (1 —aS)"'

B.=3C,C,'(3 —2C, ) sin(P + s2mj)
pv, (1-aS) sin(3$)

'

Corresponding expressions for the y and ~ components of V& are obtained by cyclic interchange of n,„
Pl2 j and +3 ~

The well-known phase velocity expressions that apply when % lies in one of the symmetry planes can
be obtained from Eq. (4) by inserting the particular constraints on S and Q that apply in these planes.
When k lies in the (001) plane at an angle 8 to the x axis, S = cos~8 sin'8 and" Q = 0. It follows from the
definition of P that

cos3( =4 cos'( —3 cosg =(1 —-', aS)/(1-aS)' '.
Equation (10) factorizes as follows:

[cos) —e) [cos(/ + 2)) /3) —&] [cos(g +4&/3) —e] = 0,
~ =- T(l-as) "'.

(10)

Any one of the roots of Eq. (11) determines the three values of cos((t) +-,'))j), and hence from Eq. (4) the
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three velocities. Taking the second root, one obtains

pv, ',pv, ' = ~((C„+C„)+[(C„-C„)—4K(C„+C„)cos'8 s1n'8]"'),

pV, -C44. (12)

Either of the other two roots of Eq. (11) would lead to the same three values of pv' but in a different
order.

The case of k lying in the (OTl) plane at an angle 8 to the x axis follows a similar treatment with

& =(C» —3C» —4C„—3K cos'8)/4(C» —C«)(1 —aS)"',
and the three velocities are

pv, ',pv, ' = ~((C»+C„+4C«) +K cos'8

+ [(C»+C»)'-K(6C»+ 14C»+8C«) cos'8+K(9C»+15C»+6C«) cos48]' aj,

pva =g(C» —C») Kcos8

( 11 «) ~0+"1+"a9
(C»+C»)KS = P0

(Cx, +2Cia+C«)K Q =&0&x&a~

-C44.
2

(14)

(1s)

(16)

The first bvo equations, which are linear and
quadratic, respectively, in the C's, can be used
to eliminate t o of these elastic constants. Sub-
stituting into the third equation leads one to an
equation of degree 6 in the third elastic constant.
This equation would then have to be solved nu-
merically or otherwise and spurious roots elimi-
nated.

However, it is to be expected that in many cases

The converse problem of determining, in a sys-
tematic way, the elastic constants from a single
set of measured velocities in a general direction
is an important one particularly with regard to
Brillouin scattering in cubic crystals. In the past,
experimental investigations have been hampered
by the lack of a relatively simple general method
for obtaining the elastic constants, and as a re-
sult have, with few exceptions, "been confined to
the special directions. This entails less flexibili-
ty in sample preparation and also means that
measurements have to be done in at least two di-
rections since one or more of the Brillouin doub-
lets are invariably absent" when the scattering
vector lies in a special direction. Both of these
disadvantages are, in principle, overcome by
avoiding the usual geometry and locating the scat-
tering vector in a general direction, preferably
far from one of the special directions.

In general one could approach this problem by
noting that the coefficients in Eq. (3) are related
to the three velocities in a particular direction by

! such as, for instance, where the variation of elas-
tic constants with temperature is being studied, '4

approximate values C, ',C, ', C, ' will be known.
Here the following iteration procedure for numeri-
cally arriving at the actual elastic constants would
probably be more convenient. " An improved set
of values C, ', C, ', C, ' is obtained by solving
the simultaneous linear equations

3
v(0)+g(Ch) C(o))9v(0)AC v (17)

where v and its derivatives are evaluated from
Eq. (4) using the original set of elastic constants
and e, are the three observed velocities. The
process is repeated until the desired accuracy is
obtained. This latter method can also be tailored
to the calculation of the elastic constants from a
measurement of the group velocities in an arbi-
trary direction. In this case there are nine veloc-
ity components to match and nine unknowns:
three elastic constants and the directions of the
three wave vectors. Special care has, of course,
to be exercised where the wave surface exhibits
cuspidal features.

The author wishes to thank Dr. J.D. Comins
and Dr. J. W. Vandersande for valuable comments
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We study the magnetic polarization induced around vacancies in two-dimensional quan-
tum crystals of fermions. A vacancy creates a ferromagnetic spin polaron in an alternate
lattice, but does not in a triangular (nonalternate) lattice. The situation of He in con-
fined geometries is discussed, in particular with respect to the observed tendency to
ferromagnetism.

Two recent papers" have proposed, indepen-
dently, that a vacancy in bulk bcc 'He induces a
ferromagnetic polarization of the surrounding
spins over a volume limited by exchange and en-
tropy. The purpose of this Letter is to extend
this study to two-dimensional (2D) systems, in
the limit of J/t « I, where 8 is the strength of
exchange interactions and t is a characteristic
tunneling frequency. It was recently suggested'
that vacancies could induce ferromagnetism in
the registered phase of 'He on Grafoil, ' or in the
incommensurate monolayers of 'He adsorbed on
various substrates. ' Such a mechanism, derived
from Nagaoka's theorem, ' was first proposed'
for bulk bcc He. Our main result is that, while
vacancies still favor ferromagnetism in 2D alter-
native lattices, they favor a magnetic vortex or-
dering in a triangular lattice, a case of experi-
mental interest.

Case of an alternate lattice. First, we deal—

with the case of a simple quadratic lattice, with
one fermion localized on each lattice site, and
one vacancy which can tunnel to a nearest neigh-
bor with a tunneling frequency t. Throughout this
paper we write t = I ~l, where 7 is the tunneling
matrix element.

In the limit of vanishing exchange interactions,
Nagaoka's theorem can be entirely reproduced:
The ground state, in the presence of one vacancy,
is ferromagnetic (with the same difficulty about
the thermodynamic limit). In the same limit,
the single-particle density of states can be cal-
culated. '

The nth moment of the density of states is given
by the number of vacancy paths returning to the
origin after n steps, with the condition that the
initial spin configuration is restored. In this
case, all the odd moments vanish. The density
of states is' symmetric with respect to the origin,
for any spin configuration. In the fully ferromag-
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