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Microscopic calculations of the phase diagrams of a two-component degenerate Cou-
lomb Fermi liquid ihe electron-hole liquid in (111)-stressed Ge have been made for
various values of stress. The coexistence curves for three-phase equilibrium which sum-

marize the most interesting features of these phase diagrams are reported. A particular-
ly striking case which occurs at lower stress is one in which the two liquid phases coex-
ist in two separate temperature ranges.

In recent years, the phase diagram of a mix-
ture of the quantum liquids He' and He4 has been
studied. ' The coexistence of two fluid phases
consisting of nuclei Rnd a sea of nucleons in neu-
tron stars has also been explored theoretically. '
However, little or nothing is known concerning
the phase diagrams of a mixture of two Coulomb
Fermi liquids although this constitutes the sim-
plest two-fluid quantum system and should be
amenable to a detailed microscopic study. Ex-
perimentally such R system is realizable in the
electron-hole liquid (EHL) in a Ge crystal homo-
geneously stressed along the (111)direction.

In this Letter we report on the most interesting
aspect of the phase diagrams of this system, i.e.,
the coexistence curves for three-phase equilibri-
um. Our CRlculRtions reveRl thRt this system ex-
hibits a rich variety of phase diagrams. The
(111)stress raises three af the Ge conduction

valleys while lowering the fourth. In pure sam-
ples "hot" electrons in the EHL can be trapped
in the three higher valleys for a time -1 p sec
before decaying into the lower ("cold" ) valley. '
This is a sufficiently long time for the hot elec-
trons to thermalize within the three higher val-
leys, although their Fermi level remains differ-
ent from that of the cold electrons in the lower
valley. If one ignores the slow transfer of elec-
trons between different valleys, the hot and cold
electrons behave thermodynamically as two dif-
ferent species in quasiequilibrium with each other
and with the holes. We shall show that under suit-
able conditions the above system separates into
two distinct liquids each made up of hot (h) and
cold (c) electrons and holes (H) but different in
composition in so far as the ratio of h to ~ is con-
cerned. The liquid phases are in equilibrium with
a vapor containing all three species.

The free energy & of the EHL can be written as

F(N„, N„Ns, V, T) =Fgo(Nq, V, T) +F,o(N„V, T) +FHo(N„, V, T) + F„,(Nq, N„N sV, T),
where VI„N„N&, and V are the numbers of hot
electrons, cold electrons, holes, and the volume,
respectively. EI,', I",', and E&' are the free en-
ergies of nonintexacting gases of hot electrons,
cold electrons, Rnd holes, respectively. Since
N~+N, =N~, only two of the component species
can be varied independently. When only one elec-
tron species is present, good results have been
obtained by approximating E„at metallic densi-
ties, by its T =0 value E„,.' ' We also use this
approximation. We make the further simplifica-
tion that the exchange-correlation energy density
E«/V depends only on the total density of the hot
and cold electrons in the EHL and not on the way
in which the electrons are distributed among the
diff erent conduction valleys. This approximation
is valid as explained recently.

To compute the phase diagram of the EHL, we
need the pair chemical potentials pI„p„and the

! pressure p. With the above approximations on F,
these are

WI =~I +Wg +Pxcp
0 0

0 0~c=~c +~g +Pxcp

p =pa + pc +pH +pxc &

where P~'=(BF&%N&)v, » P&'=- (BF&/BV)„,
p„,=(BE„,/BN)„, and p„,= —(BE„,/BV)„. Here i
can be h, c, or H =N&+N, . The p&' and p&' are
given by

P~'=f, dEvt(E)AexptP(E-t ~')]+1]

v ~(E) exp&(E —p, , ')]
(exp[P(E —p, ')]+ lj' '

where dv&(E)/dE is the density of states and n,
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=N, /V. For the nonparabolic valence band, v&(E)
=E"'f(E/S„), where S„ is the valence-band split-
ting at% =0 and f is calculated numerically' using
the results of Pikus and Bir' and of Hensel and
Suzuki. ' For the electrons, f is a constant. This
guarantees that in the limit N„- 0, Ã, finite, we
recover for p& the correct logarithmic asymptot-
ic behavior of dilute solutions. " For a given n&

we calculate p, ' and then P&'. Because E„,is not
sensitive to the details of band structure, we use
for it numerical values which correspond to a
model band structure which is simpler than that
of the stressed Ge. We have used a model band
structure corresponding to unstressed Ge and the
numerical values of E„,denoted "Model I, SPH"
by Bhattacharyya et al." This choice of E„,re-
sults in Ge EHL ground-state densities which are
in very good agreement with experiment at zero
stress and at all values of (111)uniaxial stress
for which data are available. '

Since in almost all experiments the EHD occu-
pies only a small volume in the crystal, the liq-
uid is always in contact with vapor. %'e shaD fo-
cus our attention on the restricted but particular-
ly interesting region of the phase diagram where
all three phases coexist. This region is described
according to the Gibbs phase rule,

f=C —P+2
(here C =2, P =3 and therefore f =1), by plotting
the coexistence curves. At this stage of develop-
ment of the experimental art we believe this to
be the most pertinent information.

The condition for phase equilibrium is that the
pressure and each of the two chemical potentials
be the same in all phases. This requires the si-
multaneous solution of six equations for three-
phase equilibrium. At T =0 the vapor phase can
be ignored and p =0. The results for this case
were reported earlier. ' For T 0, two tempera-
ture regimes require different treatments for the
vapor phase.

(i) At low temperatures (T & 3'K) the gas con-
sists of excitons whose vapor pressure is very
low. We set p =0 and solve the equations

I II I=&a ~ &c =&c p

for the two liquid phases I and II. We find that
the P =0 approximation is very good.

(ii) At high temperatures, the vapor phase is
metallic so that Eg. (2) is used to calculate both
the liquid and gas phases. An estimate of the den-
sity above which the vapor is metallic can be ob-
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FIG. 1. Coexistence curves for three phases in equi-
librium for a valence-band splitting Sz of 4 meV. The
values of the concentration x and total density n for
each phase are plotted for various temperatures. The
liquid phases are labeled I (with a smaller concentra-
tion of hot electrons) and II (with a larger concentration
of hot electrons). v denotes the coexisting vapor phase.
Dotted lines, smooth interpolation between the high-
and Iow-T regions; dot-dashed curve, density at which
the Debye-Hiickel screening length equals the exciton
Bohr radius (177 A).

tained by setting the Debye-Huckel screening
length equal to the exciton Bohr radius. This cor-
responds to a density n & 10"/cm', which is much
smaller than the vapor density in the temperature
region in which we use this approach. Our meth-
od of solving the equations consists in evaluating
n, p» and p, as functions of the concentration x
=n„/n, for fixed T and P. We then examine differ-
ent values of P and find the one for which p„and
p, are the same in the three phases.

The results for some typical stress values are
shown in Figs. I-3. It should be borne in mind
that these figures represent the coexistence
curves for three phases in equilibrium. At a giv-
en temperature each of the three coexisting phas-
es is characterized by its own concentration x
and density n shown in the upper and lower part
of each figure. At lower temperatures we only
plotx andn for the two liquid phases I and II. At
higher temperatures the curve for the vapor is
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FlG. 2. Coexistence curves for three phases in equi-
librium for a valence-band splitting Sz of 3 meV. No-
tation is as in Fig. 1. For explanation of dashed curves,
see text.

labeled v.
The coexistence curves contain the information

necessary to delineate the region of the phase
diagram (in n„-n, -T space) in which the three
phases coexist. It is easy to show that for a giv-
en T this region has a triangular cross section
in n&-n, space. The bar denotes the average den-
sity of the species and the vertices of the triangle
have the coordinates (n„,n, ), n„and n, being the
actual densities in the respective phases. A de-
tailed discussion of the phase diagrams will be
given elsewhere.

At low temperatures the system contains bvo
liquid phases which behave differently as the tem-
perature rises for different values of stress.
At S» =4 meV (Fig. 1) the two liquid phases dis-
solve in each other at a critical temperature of
solution between 3 and 4'K. The vapor curve v

ends abruptly at this critical temperature since
we are interested only in three-phase equilibria.
In the temperature region in which the curves are
shown dotted we do not calculate the coexistence
curves because the density in the vapor phase is
such that neither approximation (i) nor (ii) is
valid. In the lower-temperature region, we use

FlG. 3. Coexistence curves for three phases in equi-
librium for a valence-band splitting Sz of 1.5 meV. No-
tation is as in Fig. 1.

approximation (i).
At a stress S~ =3 meV (Fig. 2) as the tempera-

ture increases the liquid phase II continues to
exist as a separate phase while the less-dense
liquid phase I and vapor merge. As is the case
at zero stress, the liquid-vapor critical point
(6-7'K) is quite sensitive to the numerical inter-
polation procedure" of E„and for this reason we
have denoted part of the curve by broken lines.
Notice that the form of the coexistence curves in
Fig. 2 is very different from that in Fig. 1, which
implies the same for the phase diagrams.

At a stress S„=1.5 meV (Fig. 3) the behavior
of the coexistence curves is particularly interest-
ing. The system has bvo coexisting liquid phases
at low temperatures, which dissolve into each
other at T-2'K. For T & 5 K the system again
exists as bvo liquid phases in equilibrium with
vapor. When the temperature rises further the
liquid phase I merges with the vapor. In the tem-
perature range approximately 2-5'K it is not pos-
sible to have the bvo liquid phases simultaneous-
ly present. We find that this latter conclusion is
valid irrespective of what pressure one assigns
to the vapor phase. This remarkable behavior
can be physically understood as follows. At very
low temperatures the chemical potential pI, as a
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function of x has a minimum which is responsible
for the phase separation. ' As the temperature
increases, this minimum becomes shallower as
a result of contributions to &I, from the tempera-
ture-dependent term (- —T'in„"') which is a rap-
idly increasing function of x, and eventually the
liquid phases coalesce. With further increase of
temperature the EHL density begins to decrease
rapidly. When the density has fallen to a point
where the hole Fermi level is close to the va-
lence-band separation, the system begins to
make the maximum use of the nonparabolicity'
of the valence band, thus offsetting the contribu-
tion from the temperature-dependent part of p&.
This again leads to a minimum in p& as a func-
tion of x and the phase separation of the EHL re-
appears. It should be noted that the reappearance
of the phase separation at higher temperatures
is found also if the Hubbard values of E„,are
used; however, in this case the effect persists
to somewhat higher values of stress.

In conclusion, we have shown explicitly from a
microscopic calculation that the EHL in (111)-
stressed Ge exhibits a remarkable diversity of
coexistence curves as function of stress which in
turn implies a similar diversity of phase dia-
grams. The interesting phenomena which we have
discussed occur in the temperature and stress
ranges which are easily accessible to experiment
and should, therefore, provide a stimulus for ex-
perimental work on a unique system. In practice
the concentration x can be controlled in a time-
resolved experiment. " One possible way to iden-
tify the phase separation would be to study the
luminescence line shapes as a function of time.

We thank J. Bajaj, L. Liu, and G. Wong for help-
ful discussions. This work was supported in part
under the National Science Foundation-Materials
Research Laboratories program through the Ma-

terial Research Center of Northwestern Universi-
ty (Grant No. DMH 76-80847) and in part by the
National Science Foundation Grant No. DMR 'T7-

09937.

See, for example, C. Ebner and D. 0. Edwards,
Phys. Rep. 2C, 78 (1971); J. M. Kincaid and E. G. D.
Cohen, Phys. Rep. 22C, 58 {1975).

G. Baym and C. Pethick, Annu. Rev. Nucl. Sci. 25,
27 (1975); J. M. Lattimer and D. G. Ravenhall, Astro-
phys. J., 223, 314 (1978).

3H.-h. Chou, G. K. %'ong, and B.J. Feldmann, Phys.
Rev. Lett. 39, 959 (1977).

M. Combescot, Phys. Rev. Lett. 32, 15 (1974) .
~The validity of the approximation is discussed by

T. M. Rice, in Proceedings of the Twelfth International
Conference on the Physics of Semiconductors, edited by
M. H. Pilkuhn (B. G. Teubner, Stuttgart, 1974), p. 23.

~G. Kirczenow and K. S. Singwi, Phys. Rev. Lett. 41,
326, 1140(E) (1978).

G. Kirczenow and K. S. Bingwi, Phys. Rev. B 19,
2117 (1979). A model calculation of the EHL ground
state in stressed Ge by A. A. Kastalskii, Fiz. Tverd.
Tela 20, 1241 (1978) [Sov. Phys. Solid State 20, 715
(1978)]has just been brought to our notice. This calcu-
lation neglects valence-band structure and is in the
Hartree-Fock approximation.

G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela 1, 1828
(1959) [Sov. Phys. Sol State 1, 136 {1959)].

J. C. Hensel and K. Suzuki, Phys. Rev. B 9, 4219
(1974) .

L. D. Landau and E. M. Lifshitz, Statistical Physics
(Pergamon, New York, 1969), p. 277.

~~P. Bhattacharyya, V. Massida, K. S. Singwi, and
P. Vashishta, Phys. Rev. B 10, 5127 {1974).

T. M. Rice, in Solid State J'hy»«, edited by H. Eh-
renreich, F. Seitz, and D. Turnbull (Academic, New
York, 1978), Vol. 32.

H.-h. Chou, J. Bajai, and G. K. Wong, J. Lumin.
18-19, 131 (1979).

1007


