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Surface Phonons on Stepped Pt(111) Surfaces

2 QcroszR 1978

alized to step edges on platinum 6(111)&& (lli)
bove the maximum frequency of the bulk pho-

The experimental observation phonons loc
surfaces is reported. Their frequency is a
non spectrum.

Surface phonons, i.e. , phonons with the ampli-
tude of vibration localized to atoms near the sur-
face of a material, have been considered in the
theory of lattice dynamics for some time. ' ' Low-
frequency acoustic surface waves on solids (Ray-
leigh waves) even have become a matter of some
technical relevance. ' In the high-frequency re-
gime the only surface phonons accessible to ex-
perimental observations so far mere the Fuchs-
Kliemer surface phonons' on ionic crystals. ' '
These optical surface phonons are nonradiative
polarization waves in a dielectric material with
the geometry of a slab or semi-infinite half-
space. They are analogous to the surface plas-
mons of a free-electron gas. As the typical de-
cay length of the amplitude of vibration for Fuchs-
Kliewer phonons is ™q~~

'
(q „being the wave vec-

tor parallel to the surface) their frequency is in-
sensitive to the specific physical properties of
the outermost surface layer for the small q~~ ac-
cessible in the experiment. ' '

In this Letter me report the first experimental
observation of surface phonons reflecting truly
microscopic properties of the surface. The pho-
nons are associated with the step atoms of a clean
stepped Pt[6(111)x (111)jsurface. Evidence for
the surface character of the phonons is provided
by the following observations: (i) The frequency
of the surface phonons is above the maximum fre-
quency of the bulk spectrum. (2) In situ compari-
son to a flat Pt(111) surface shows no evidence
for the phonons on the flat surface (3) Smal. l
amounts of CO adsorbed on the step atoms shift
the frequency substantially.

The experimental technique used in the experi-
ments is electron-energy-loss spectroscopy
(EELS).' In previous studies using this technique
the observation of characteristic losses was lim-
ited to frequencies above bar - 300 cm ' (37 meV)
due to the lack of resolution and high background
intensity in the vicinity of the elastically reflect-
ed beam. Lattice phonons on metal surfaces
therefore could not be observed. In this study we
employ a more advanced version of a single-pass
electron spectrometer with cylindrical conden-
sers as energy-dispersing elements. For this

spectrometer the background intensity is less
than 10 ' of the no-loss intensity for losses above
8&@ = 150 cm ' (18.5 meV).

For an in situ comparison of a flat and a stepped
surface two crystals with different orientations
were mounted on the manipulator. The crystals
were cut by spark erosion from single-crystal
rod after Laue orientation to a precision of + 0.5'
The crystals mere cleaned in ultrahigh vacuum

by oxygen treatment and annealing to high temper-
atures by standard procedures which have been
controlled using Auger and LEED (low-energy
electron diffraction) analysis. The EELS spectra
were recorded in specular reflection with a pri-
mary energy of 6 eV at an angle of incidence of
70' from the normal. Typical results for the
clean surfaces are shown in the upper panel of
Fig. 1. The dotted line represents the flat sur-
face and characterizes also the background due
to the tail of the elastically reflected electrons.
The spectrum of the stepped 6(111)x (11I) sur-
face shoms a characteristic loss with a maximum
at 205 cm '. This loss was found to be extreme-
ly sensitive to contamination. Even at pressures
of 10 "Torr only a few minutes of observation
were available. The spectra were therefore re-
corded immediately after flashing with the sam-
ple temperature still considerable above room
temperature (T -500 K). The additional small
losses in the spectrum are due to beginning CO
contamination and represent a fractional cover-
age of -0.001. Other common components of a
UHV residual gas like H„CO„CH4, and H,O do
not adsorb on Pt at this temperature. From a pre-
vious study of CO adsorption on the same stepped
surface where EELS spectra and flash-desorption
spectra were compared it was learned that up to
exposures of -0.4 L (1 L= 10 ' Torr sec), CO ad-
sorbs on top of the step atoms. " We therefore
purposely dosed the sample with CO. A typical
example referring to an exposure of -0.1 L of CO
is shown in the lower panel of Fig. l. Here the
phonon loss is substantially changed and the met-
al-carbon vibration (370 cm ') and the CO-stretch-
ing vibration (2050 cm ) are observed in addi-
tion. We estimate the amount of adsorbed CO by
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FIG. 2. Loss spectra of the clean and CO-dosed
stepped surface. The bulk densi of stu ensity of states is shown
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face and arbitrary q . Energy losses due to bulk
phonons therefore should resemble closely the
density of states. We believe that this effect
causes the observed loss spectrum in the case
where the step atoms bind CO molecules (Fig. 2).

A very puzzling aspect of the results is the fact
that the surface phonon has a higher frequency of
vibration than all bulk phonons which is at vari-
ance with the common belief. While a theory of
surface phonons associated with step edges is not
available the implications of this effect may be
elucidated with the help of the simple model of a
monoatomic linear chain arith nearest-neighbor
interactions. In this model no localized surface
vibration exists unless the force constant between
the surface atom and the next atom is 33%%ug higher
than the bulk coupling constant. When we apply
this simple model to the platinum case we calcu-
late the force constant for the edge atoms to be
1.7 times the bulk force constant. ' Therefore
the observation of a surface phonon as high as
reported here is indicative of very substantial
increase in the force constants for the edge atoms.
It suggests a major rearrangement in the elec-
tronic configuration of edge atoms possibly con-
nected with a geometric contraction in order to
maintain a high binding energy with the seven
nearest neighbors. This indeed could give rise
to a change in the force constants by a factor 12i
7= 1.71 just as estimated from the experimental
data. Once CO is adsorbed on the platinum step
atoms the force constant should relax to the bulk
value which is consistent with the observed de-
pletion of the loss intensity around 205 cm '. As
seen from Fig. 2, however (and also for higher
coverages, there is still some loss intensity
above the bulk phonon range when CO is adsorbed.
This may be correlated to the fact that the CO ad-
sorption on the step atoms saturates at a frac-
tional coverage of 0.5 for steric reasons.

The linear-chain model also allows up to make
a rough estimate of the degree of localization of
the phonon to the step edges. Assuming the force
constants as calculated from the frequency shift,
the atom in the second layer of the linear chain

has a mean-square amplitude of vibration of -e '
of the surface atom. Thus the degree of localiza-
tion should be rather high and the phonons report-
ed here may therefore be considered as edge pho-
nons.

Finally we note that the observation of edge pho-
nons and the depletion of their intensity with ex-
posure to an adsorbate seems to provide a very
elegant method for determining whether the ad-
sorbate is adsorbed at the steps or on the ter-
races.

One of the authors (H.I.) wishes to acknowledge
inspiring discussions with C. Garrelfs.
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