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It is shown that certain types of position-space, or "cell," renormalization-group trans-
formations from an Ising-model object Hamiltonian onto another Isirg-model image Hamil-
tonisn are well defined snd smooth in the thermodynamic limit, provided the object Hamil-
tonian has a large enough magnetic field. In certain other cases there is evidence (though
not a rigorous proof) that no thermodynamic limit exists, or, if it exists, the transforma-
tion is not smooth.

Renormalization-group methods have been ap-
plied with considerable success to a variety of
problems in statistical mechanics, especially in
connection with phase transitions and critical
points. ' Despite their widespread use, little is
known about the precise mathematical structure
of renormalization transformations: In particu-
lar, whether they possess a well-defined thermo-
dynamic limit as smooth transformations from
Hamiltonians onto Hamiltonians, as is assumed
(at least implicitly) in practical applications.

We have been able to prove that a certain class
of position-space or "cell"-type transformations
for Ising models are well defined and smooth in
this limit provided the starting or "object" Ham-
iltonian has a large enough magnetic field; i.e. ,
the lattice-gas activity is sufficiently small. In
certain other cases we have plausible, though not
completely rigorous, arguments for the existence
of "peculiarities" in certain transformations,
which suggest that either the transformation is
not smooth or the "image" Hamiltonian (supposed-
ly) produced by the transformation is not defined.
In those regions of the parameter space in which
they occur these peculiarities, which do not seem

to have any direct connection with the phase tran-
sitions associated with the object Hamiltonian,
cast doubt on the applicability of the usual renor-
malization-group procedures.

The transformations we have studied are of the
for m

expP'(r) = Tr,[T(v, v) expH(o)],

where o stands for a set of Ising spins o, which
comprise the object system with "Hamiltonim. "
(equal to the usual Hamiltonian divided by —kT)
H(o), and v another set of Ising spine v, which
comprise the image system with Hamiltonian
H'(7). The trace Tr. , denotes a sum over the val-
ues, + 1, of all of the 0's. The conditional prob-
ability 7.' is of the form introduced by Kadanoff'.

T(7, v) = +[2 cosh(p Q c,)] '

xex v,. o,

Here C(j) stands for the set of sites of the object
system lying in a "cell" associated with the image
spin ~, , and p is a parameter giving the coupling
of the image spin to the object spins in its ceB.
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)
Tr [e(o)expH»(o)j

Tr,[exp'»(v)] (4)

Here IIx is the modified-object-system Hamilto-
nian defined by

a»(o) =B(a)+p Q o, -p Q g.
iGC(Xf) &' ) ig C( 0'gX)

with

C(A)= U C(~),
jE.A

yzG' Dc:c(y)

iGD

and 0'~X the complement of X in O'. The final
term in (5) comes from the terms in square brack-
ets in (2), and the QD are real-valued functions of

It can be shown that the thermodynamic limit
for the image-system interactions, II', is meLL de-
fined if, for every (finite) setA and every (in gen-

The transformation (1) is well defined for a fin-
ite system in which the o's are associated with a
finite subset 0 of sites taken from an infinite lat-
tice, and the ~'s with a finite subset 0' of another
infinite lattice. In order to discuss the thermo-
dynamic limit in which both 0 and 0' increase to
infinite size, we introduce the function W'{A)X)
which is the change in H'(7) in going from a con-
figuration in which the 7,. are +1 for i in the set
X and —1 elsewhere to a configuration in which
the 7,. are +1 for i in the set XU A and —1 else-
where. In lattice-gas language it is the change
in energy (divided by —AT) which occurs if parti-
cles are added at the empty sites inA when all
the sites in X are already occupied. This func-
tion can be finite if A is finite, which we shall al-
ways assume to be the case, even if the set X is
infinite, and thus retains its significance (unlike
the total energy) for an infinite system. In par-
ticular it can be shown' that W'(A~X) corresponds
to a well-defined H', or set-of interactions, for
the infinite system provided it is a continuous'
function of its second argument.

The function W„'Q ~X) is defined in the same
manner for a finite image system 0', assuming
A& 0', except that X in the above discussion
must be replaced by XA O'. By combining (1)
and (2) one obtains, if AA X is empty, the expres-
sion

expW„'(A ~X) = (exp(2p Q 0,.)}„»,
igC(A)

where the angular brackets refer to an average
defined for a modified object system by

eral infinite) set X which does not intersect A,
the right-hand side of (3) possesses a limit as 0
(together with Q') tends to infinity, provided this
limit is uniform. By "well defined" we mean that
W'(A~X), the limit of W„'(A~X), is a continuous
function of X and that it is associated with the
Gibbs state, which is the thermodynamic limit of
the probability distribution

p'(~) = exp''(7) jTr, [exp0'(r)j,

through the equilibrium equations of Dobrushin'
and Lanford and Huelle. "The proof of these as-
sentions is somewhat technical and mill be pub-
lished elsewhere. 4

We have used the equation of Gallavotti and
Miracle-Sole' to show that, provided the interac-
tions P(o') translated into lattice-gas language"
satisfy the fairly mild restriction"

llcll=sup Z I+(X)l&
i X:iEX

and provided the magnetic field is sufficiently
large (i.e. , the lattice-gas activity is sufficiently
small), the thermodynamic limit of (3) is uniform
and the resulting W'(A)X), and hence the corre-
sponding interactions in B', are analytic functions
of the parameters which appear in H. Under these
same conditions, the lattice-gas interaction 4 '

corresponding to H' has finite norm in the sense
of (8). Moreover, if H is suitably short ranged,
the many-body interactions in II associated with
a cluster of sites fall off exponentially rapidly
with the size of the cluster.

Unfortunately, our arguments only work when p
is finite, while (2) remains well defined in the
limit of p going to infinity. Al.so we are unable to
show that the transformation (1) is well defined
when applied to a Hamiltonian resulting from a
previous application of the transformation. That
is to say, we are unable to show that (1) can be
iterated more than once.

Our failure to construct a proof does not, of
course, imply that (1) fails to possess a thermo-
dynamic limit which is a smooth transformation.
However, we also have positive evidence for a
breakdown in smoothness or the nonexistence of
a thermodynamic limit under some circumstanc-
es. Consider the Hamiltonian

IJ(v) =KQ cr,.v, +h g o, ,

with K & 0 (ferromagnetic) and the first sum over
pairs of nearest-neighbor sites on a Lattice of di-
mension d& 2. For T(v, c) choose the special
case ("model I") in which there is one image spin
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for each object spin; i.e. , C(j) =(j) is one site.
Then the last term in (5) is a constant and can be
ignored.

If X in (3) is the empty set g, the modified ob-
ject Hamiltonian (5) is the same as (9) except that
h is replaced by h -p. In the case where A is a
single site j, the right-hand side of (3) is equal to

cosh2p + (a, )„~sinh2p. (10)

It is well known'2 that when K is sufficiently large,
(9) leads to a phase transition with the consequence
that (a&) in the thermodynamic limit is a, discon-
tinuous function of h at h = 0. The same transition
occurs for the modified object system with Hamil-
tonian Hx q except that the discontinuity occurs
at h= p. Thus the thermodynamic limit of (10),
and hence W'(( j) (p), is discontinuous at h =p.
Note that in this case, however, we have not

proved that the %" resulting from the thermody-
namic limit of (3) is associated with the corre-
sponding Gibbs state through the equilibrium equa-
tions.

By considering the nature of the modified object
Hamiltonian for various choices of the set X one
can make a plausible, though not a rigorous,
argument that the function W' is afflicted with

similar peculiarities for all values of h between
—p and p, provided K is sufficiently large. Anal-

ogous argument= plausible, but not rigorous—suggest the presence of peculiarities for suit-
able choices of 0(a) for other cases of transfor-
mation described by (2), both when p is finite and

when it is infinite.
Though there can be little doubt as to the exis-

tence of these peculiarities under appropriate
conditions, their interpretation is difficult. We

are of the opinion that the discontinuities which

occur in the thermodynamic limit of (3) for model

I, and in certain other cases, are indications that
the transformation (1) does not possess a well-
defined thermodynamic limit, that is to say, an

appropriate image Hamiltonian does not exist. If
this is correct, it is rather disturbing in view of
the fact that for h = p one is quite certain" that

(9) does not give rise to a phase transition in the

object system. In certain other cases we have

examined, it seems possible that the thermdy-
namic limit exists, but that the parameters in B'
are not smooth functions of those in H. From the

point of view of typical applications, an unsmooth
transformation is almost as disturbing as a non-

existent transformation. Further study is needed

to determine the precise nature of these peculi-
arities and the extent to which (if any) they invali-

date the results of approximate position-space
renormalization-group calculations.

All the peculiarities we have discovered thus
far arise from phase transitions in a modified ob-
ject system which seem to have no connection at
all with phase transitions in the actual object sys-
tem for the same parameter values. This sug-
gest=-- though such a suggestion must be regard-
ed as quite speculativ" that the peculiarities
may arise from taking (1) "literally, " and that a
modified 8' which closely reproduces the prob-
abilities of the more likely configurations and
changes those of the less likely configurations,
and thus has the "right physics, " could be pro-
duced by an approximate transformation lacking
the pathologies discussed above. Indeed, the ap-
proximations which are actually used to calculate
properties of Ising models may already embody
this suggestion. If so, one can understand their
considerable success as approximations, togeth-
er with their apparent failure to provide instanc-
es of the peculiarities which are (almost certain-
ly) present in exact transformations.

Our results do not apply directly to transforma-
tions on non-Ising systems and those which in-
volve integrating out degrees of freedom in mo-
mentum space. It is evident, however, that there
is a need for a careful investigation of the math-
ematical properties of such transformations to
determine the extent to which they are well de-
fined and smooth in the thermodynamic limit.

We are sometimes asked whether it is not pos-
sible to avoid problems associated with the ther-
modynamic limit by regarding the renormalization
transformations simply as mappings of states
(i.e. , probability distributions) of infinite sys-
tems onto other states, without raising the ques-
tion as to whether these states are associated
with a Hamiltonian. Such transformations are
easier to define and are probably better behaved
than transformations of Hamiltonians onto Hamil-
tonians.

Our reply is that whereas such an approach may
have distinct advantages, it is not clear (to us,
at least) how the standard renormalization-group
phenomenology of smooth flows, relevant eigen-
operators, etc. , can be translated into the space
of states. The usual discussions involve proper-
ties of transformations near, and not simply at,
the fixed point. No doubt if there were a relative-
ly simple, straightforward connection between
states and Hamiltonians, there would be no great
difficulty in translating a phenomenology for one
into a phenomenology for the other. But the re-
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suits reported in this paper, together with the
enormous literature on phase transitions, sug-
gest that the connection between states and Hamil-
tonians is extremely complex.
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gfe examine the effect of an assumed variation in Planck's constant 8 on the element
abundances produced by nucleosynthesis in the standard hot big-bang model of the uni-
verse. In order to be consistent with current estimates of the primordial helium and

deuterium abundances, we find that at the epoch of nucleo&yuthesis (a red shift z =10 -10
t =10 '-10 sec after the initial event), 0.2&K„~~«»«&,»,/h&««„, & 3. This result sup-
ports the applicability of the local laws of physics to the ear~liest epoch of the universe
examined to date.

Ever since Dirac first examined the possibili-
ty of a variation with cosmic time of the funda-
mental "constants" of nature, the applicability
of the local laws of physics to other places and
times in the universe has been subject to obser-
vational scrutiny. Two points of view have been
taken: (1}that the laws of physics (including the
physical "constants") evolved at a, very early
stage of the universe and were subsequently
"frozen in" with their present values, ' or (2} that
the laws have evolved continuously in time, the
point of view proposed by Dirac and the one ex-
amined in this paper.

Direct and indirect arguments based on astro-

nomical observations of distant objects or of ra-
dioactive nuclei (formed at an earlier epoch) in
the laboratory have been used to set limits on any
allowed time variation of the atomic constants
such as the fine-structure constant, the photon-
to-electron inertial-mass ratio, the anomalous
magnetic moment of the proton, the charge on the
electron or proton, and the weak-interaction con-
stant. These results have been summarized by
Dyson. ' By the assumption that the atomic con-
stants have all remained fixed, limits on any pos-
sible time variation of Newton's gravitation con-
stant G have also been set. 4

Recently, observational limits on variations of
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