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A molecular-dynamics calculation of the work of introducing a charge in a polarizable
Quid leads to about twice the value predicted by the Born continuum model. The screened
Coulomb field reaches its macroscopic limit about three molecular diameters from the
charge but is larger than the continuum dielectric prediction because of higher-order po-
Iarizahility corrections. The diffusion coefficient leads to a Stokes radius that corre-
sponds roughly to a singly ionized particle and its solvation shell diffusing as a unit.

Despite the importance of solutions of electro-
lytes in many physical and particularly biophysi-
cal situations it is remarkable that primary re-
liance for estimating both equilibrium and trans-
port properties of such systems is still based on
continuum models. "' Recently several works
concerned with ion dynamics in polar fluids have
appeared, but these present either continuum
models' or an heuristic approach' to account for
relaxation of the solvent as the ion moves through
it. In hopes of stimulating the development of
molecularly based statistical-mechanical theo-
ries for these systems and to check on the ac-
curacy of continuum-model predictions, we pre-
sent here a molecular-dynamics study of a
charged particle in an idealized solvent consist-
ing of point polarizable atoms.

The model is defined by the potential-energy
function
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The first term describes the interaction of the
charge, q', of the nonpolarizable particle, 0, with
the induced dipoles, pj. The second term repre-
sents the induced-dipole-induced-dipole interac-
tion via the dipole tensor T =&&(1/r). The third
term is the potential energy of induced-dipole for
formation, where n is the isotropic point polari-
zability of the solvent particles. Finally, the
last term represents the pairwise short-range
interaction between all particles including the
charged particle. For this the Lennard-Jones 12-
6 potential was used with the well depth at r =2' 'e
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can be examined separately.
The linear term in E»I. (3) is correctly given by

the dielectric continuum theory when particle i is
far from the charged particle. In evaluating the
linear term for large distances the dominant con-
tribution to the sum is from screening particles
j which at large separations are uncorrelated
with either the charged particle or the particle
i . Thus,

qrjo I 8n
E» =,' 1 ——pn +0(n'),

ip
(4)

independent of the detailed nature of the forces.
The term in brackets is the asymptotic value of
the screening function S(r) to first order in the
polarizability. Continuum theory predicts the
screening as the usual 1/e, modified by a cavity-
field correction because the field is evaluated at
the center of a particle. Since a particle in con-
tinuum theory is considered as being contained in

denoted by &LJ to avoid confusion with the dielec-
tric constant &. The induced polarization at par-
ticle i is proportional to the instantaneous elec-
tric field at i,

P» =n E» =nt. »f (r»o/r»o') + Z; T», .P ].
In the computations the electric field at i is ob-

tained iteratively from E»I. (2) using the value of
P» at the preceding step. If the iteration is started
from the polarization due to the pure Coulomb
field of the charged particle, the terms in the ex-
pansion in powers of n for
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a cavity,

1 3cS=-
E 2f+1 (5)

This expression for S may be expanded by using
the Clausius-Mosotti equation'

(e —1)/(e +2) = (4~/3)I n +0(n')

to show the equivalence" to Eq. (4) to linear
order:

S = 1- (8~/3)pn +0(n').
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FIG. 1. Comparison of the radial distribution func-
tion, g(r), and the screening function, 8{x), around a
charged particle (solid line) and an uncharged particle
(dashed line) near the triple point of Argon. The first
peak of the radial distribution function around the
charged particle is not sketched in because of lack of
spatial resolution. The screening function for the
charged system (solid line) is for a system of 864 par-
ticles. The same function calculated for a system of
500 particles is shown for large ~/a (dotted) to illus-
trate boundary effects. The horizontal solid line is the
screening predicted by continuum dielectric theory us-
ing the Clausius-Mosotti value for the dielectric con-
stant,

The deviation between the continuum theory and
the exact screening function due to differences in
the nonlinear terms is evident from Fig. 1.

The ratio of the average electric field at a par-
ticle to the unscreened Coulomb field, S(x), is
shown in Fig. 1 to reach its asymptotic value
about 3 molecular diameters away from the
charge. This value is considerab&y higher than

the continum value (shown in Fig. 1 by a horizon-
tal line) for a value of the polarizability n/o'
=0.1, somewhat higher than the value for argon
of n/v' =0.04. I'n these calculations periodic
boundary conditions were used; however, none

of the image particles was charged or polarized.
The polarization was confined to the largest

sphere in the central periodic cell centered on
the charged particle. The effect of these bound-
ary conditions on the screening function is seen
in Fig. 1 by comparing the results for two differ-
ent-sized systems. At small distances (&/o"( 3.25) the two systems gave essentially identical
screening functions. The same slight decrease
and then linear increase in the screening function
near the boundary, beyond where the function
reaches its asymptotic value, is also reproduced
by a simple evaluation of the linear term in Eq.
(3). The size system used here is thus sufficient
to determine the asymptotic value. Also note-
worthy about the screening function is that at dis-
tances as close as that of the nearest neighbors
the field is already reduced to -70Fo of the pure
Coulomb-field value due to the induced polariza-
tion in the neighbors. The oscillations in the
screening function follow quite closely the struc-
tural features in the radial distribution function
shown in Fig. 1. The screening function around
a charge in the limit q- 0 is also shown on Fig.
1 and differs at small r from the S(r) for q =1.
The two S{r) curves have the same large-& be-
havior with both approaching a constant value of
0.59+ 0.02, where the estimate of the possible
error is based on an examination of the r results
for all q values listed in Table I.

Comparison of the radial distribution functions
around the charged and uncharged particle show
that the strong attractive force of the charge on
the polarizable particles leads to the formation
of a tightly packed solvation shell. The infrequent
transfer of particles between the solvation shell
and the rest of the fluid is indicated by the near-
zero value of the radial distribution function at
the first minimum. The average number of par-
ticles in the region within this first minimum de-
creases as the charge is increased. There are
12.5 particles on the average in that region for
the uncharged system, 10.5 for a system with a
charge of one-half electron unit, 9.5 for the singly
charged system, and 8.5 for the 1..5-electron-unit
charged system. This decrease represents the
balance between the repulsived forces among the
particles that are drawn in and their attractive
force with the charge. For a doubly charged ion,
the number of nearest neighbors decreases still
further and there is evidence that a second shell
of neighbors is significantly attracted to the
charge.

An attempt to integrate the difference between
the radial- distribution function for the charged
and uncharged system to obtain the partial molar
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peak at large values of co* = (mo'/~~J )' '&u which
shifts to higher frequency as the charge increases.
This mode can be identified as the vibration of
the charged particle within the increasingly
bound solvation shell. A crude harmonic model
in which the solvation shell has been localized
in a spherical shell at the first peak in the radial
distribution function reproduces these peak fre-
quencies rather well. The lower-frequency peak,
present even in the uncharged system, can be at-
tributed to backscattering of the diffusing parti-
cle in these dense systems. The shift in this low-
er-frequency mode as the charge increases could
be due to backscattering of the ion and its solva-
tion shell.

The diffusion constant, D, given by

D* =

(m/aqua

cr')' 'D = (kT/s Li }f(0)

is presented in Table I and shows a decrease as
the solvation shell forms around the charge.
The diffusion coefficient of a sphere in a fluid,
according to the Stokes-Einstein hydrodynamic
theory, is inversely proportional to the sphere
radius and fluid viscosity. Assuming the solvent
viscosity is not affected by the charging process
and that the same combination of stick or slip
boundary conditions apply at the sphere surface
for the charged and uncharged system, the ratio
of the diffusion constant for the charged system
to that of the uncharged system tells how the ef-
fective radius of the diffusing particle changes.
If the ion and nearestneighobrs diffuse as a unit,
this ratio should be roughly 3. The actual ratio,
given in the last column of Table I, is close to

1 for charges less than half an electron charge
and then increases rapidly to a value near 3 for
charges from 1 to 1.5 electron charges. For
larger charges, the ratio further increase and it
appears difficult to accurately predict a diffusion
constant from a hydrodynamic model treating the
ion and solvation shell as a unit.
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auspices of the U. S. Department of Energy by
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The superconductirg transition temperature T, and its width ~T, were determined for
neutron-irradiated V38i for various fluences &pi, using heat-capacity and resistivity mea-

surements. It was found that, although the two determinations do not give identical re-
sults, in both cases AT, increases with Quence indicating the inhomogeneous nature of

the damage.
High-energy nuclear irradiation shows striking

depressions in transition temperatures, T„of
superconducting AI5 compounds. ' ' The mecha-
nism of this depression is still a matter of some
debate. ' Appel' has given a theory of the radia-
tion damage in these compounds assuming the

disorder to be antisite defects distributed homo-
geneously on the atomic scale. On the other hand,
Pande' has offered an alternative model in which
the damage is taken to be in the form of small
coherent disordered regions in a much less dis-
ordered matrix. Experimental evidence for this

Superconducting Transition-Temperature Widths in Neutron-Irradiated Single-Crystal V3Si
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