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yields self-consistent densities and potentials
which agree with those calculated self-consistent-
ly via a bulk-band-structure calculation of a pe-
riodic vacancy array. Its real strength, however,
is that it produces bound-state energies, reso-
nance energies, and resonance widths that are
more reliable than, or inaccessible to, the peri-
odic-array technique and at less cost. The type
of information and the degree of accuracy made
available by this new technique will be needed to
study the effects of lattice distortions and their
coupling to the electronic system.

-60

FIG. 3. Spherical average of components of the self-
consistent vacancy potential and the total potential of
Ref. 3 (dashed line). Angular anisotropy of the poten-
tials is generally smaller than+ 10%.

than the potential.
In Fig. 3, we present the spherical average of

various components of the defect potential. The
total potential of Ref. 3 (dashed line) was evalu-
ated using a relatively low cutoff of Fourier
components which introduced spurious oscilla-
tions into the "supercell" ionic potential. We be-
lieve that this accounts for the difference between
the two calculated defect potentials.

In summary, this Green's-function technique
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Self-Consistent Method for Point Defects in Semiconductors: Application
to the vacancy in Silicon
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We report the development of a method to calculate self-consistently the electronic
structure of neutral point defects in semiconductors. The method is an adaptation of the
original Koster-Slater idea. Calculations become feasible, practical, and accurate at the
level of current band-structure and surface calculations when an LCAO basis set is used
instead of Wannier functions. A detailed study of the isolated vacancy is Si is used to
illustrate the method.

Point defects (vacancies, interstitials, etc.)
and impurities in semiconductors are known to in-
troduce localized states with energy levels in the
fundamental gap. While shallow levels and some
moderately deep levels are adequately described
by effective-mass theory, ' the theoretical de-

scription of most deep levels, which play a domi-
nant role in determining many properties of elec-
tronic devices, has been one of the major out-
standing problems of semiconductor physics. A
large number of methods have been introduced
and used for a variety of defects and impurities. '
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The results have provided substantial qualitative
understanding of the nature of binding at deep
levels, but no approach has established itself as
capable of providing accurate and unambiguous
solutions, comparable in accuracy and reliability
to the calculations that are currently possible
for perfect bulk solids (band theory), surfaces,
and interfaces. In this Letter, we report the de-
velopment of a method which is capable of pro-
ducing results of precisely such accuracy and re-
liability and illustrate its power with a detailed
description of an isolated neutral unreconstructed
vacancy in silicon.

The problem at hand has two distinct aspects:
the choice of Harniltonian and that of a method to
seek the corresponding eigensolutions. Even
though a variety of Hamiltonian choices (semi-
empirical, superposition of atomic potentials,
etc.) can provide useful information, we have
elected to use our method in the context of a self-
consistent local-density theory of electronic
structure. This choice frees our results from
any dependence on the assumed similarity of in-
teractions in the perturbed system to those in
the unperturbed bulk crystal. We show below
that some of the results we obtained previously
using a, semiempirical tight-binding Hamiltonian
in fact survive the iteration to self-consistency,
but others do not.

Given the Hamiltonian, we now turn to the choice
of method. The most common method, namely
the cluster method, has recently' been used with
self-consistent Hamiltonians. The conclusion
from these studies was that even 54-atom clus-
ters, the largest that could be handled, are not
adequate to contain the bound-state w'ave functions
and produce a large uncertainty. ' More recently,
two of us' demonstrated that, when a semiempir-
ical Hamiltonian is used, the most powerful and
accurate method available to solve the problem
of neutral point defects is an adaptation of the
Koster-Slater' method, first introduced in 1954
and subsequently used in several studies of point
defects"' and surfaces. ' Our method has three
clear-cut advantages over the cluster approach.
First, our approach permits us to focus directly
on changes in the electronic structure caused by

the defect; related to this point is the fact that
properties of the bulk, such as the band gap, are
accurately built in to our calculations and are
not affected by introduction of the defect. This
is not true of even the largest clusters (54 atoms')
which have been studied self-consistently. Sec-
ond, our formalism fully exploits the translation-

al symmetry of the host material. The third im-
portant advantage of this approach is that the
magnitude of the required numerical problem is
governed by the spatial range of the perturbation
potential rather than the very much greater range
over which the electronic wave function is altered.
In the particular application discussed below, for
example, a full 30/o of the charge associated with
the localized state in'the band gap lies outside of
the region in which the perturbation potential is

. localized.
A description of the Koster-Slater method is

available in the original paper and in a series of
papers by Callaway and Hughes' and Callaway. '
The most convenient formulation of the method
is in terms of Green's functions. If G'(E) is the
Green's-function operator for the perfect crystal,
bound states in the gap introduced by a given per-
turbation U are given by the zeros of the determi-
nant

The change in the density of states in the band
continua is also given by an expression involving
only D(E). More importantly, the change in the
charge density, which is needed for self-consist-
ency, is given by

For analytical as well as numerical work, the
operators appearing in the above formulas must
be represented in a convenient basis set. Tradi-
tionally, operators have been expressed in terms
of Wannier functions as the natural basis set of
localized functions. The first applications of the
Koster-Slater approach, ' however, proved ex-
tremely cumbersome, not for reasons related to
the method per se, but for reasons related to the
construction of the Wannier functions. The final
results had to be empirically adjusted even to
obtain a bound state in the gap. We avoid these
serious difficulties by starting with the linear-
combination-of-atomic-orbitals (LCAO) method
for a self-consistent pseudopotential band-struc-
ture calculation. " We then use the same set of
LCAO orbitals as basis states for a11 the oper-
ators of the Koster-Slater-Green's- function
formalism. " While simple LCAO orbitals are
not conveniently orthonormal, they are enor-
mously easier to generate and the relatively small
number of functions actually required to describe
the defect-induced change in the electron density
can be easily orthonormalized. Physically, the
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implicit assumption is made that as long as the
chosen set of LCAO orbitals on each atom of the
perfect crystal is adequate to give an accurate
band structure, then the same set of orbitals at
all sites is also adequate to describe the infinite
crystal containing a single vacancy. " Having
chosen a set of LCAO orbitals on each atom, '
we exploit symmetry and form symmetrized orbi-
tals on each shell of atoms surrounding the defect
site (shell orbitals). Finally, because shell orbit-
als are not orthogonal, we construct orthogonal-
ized shell orbitals (OSO's) by orthogonalizing
each shell orbital to the orbitals on all the shells
closer to the defect site.

The Green's-function matrix elements between
pairs of OSO's are then calculated using standard
techniques of Brillouin-zone integration for the
imaginary part and a Hilbert transform for the
real part. Since the number of LCAO orbitals on
each atom is finite, the- Hilbert transform is
uniquely defined in this case." These quantities
are calculated once for a given host crystal and
stored. For a given U, one has simply to calcu-
late its matrix elements between pairs of OSO's
and construct the quantity D(E) of Eq. (1), which
now becomes

D(E) =detll & 8 -Z„G „'(E)U'„all,

where o'. , P, and y label the OSO's. The self-con-
sistent-field iteration is initiated with an arbi-
trary estimate of U. The change in the charge
density &p(r) is then obtained by expressing (2) in
the OSO representation. From this quantity, a
new perturbation potential is constructed and so
on. Details of the calculations will be given else-
where.

We turn now to our results for the isolated va-
cancy in Si. The objectives of the calculations
are to investigate the following: (a) bound-state
energies and wave functions, (b) changes in the
density of states within the band continua corre-
sponding to resonances and antiresonances, and

(c) the charge distribution in the vicinity of the
vacancy.

The calculations were performed using LCAO's
centered on the first three shells of neighbors
surrounding the vacancy (total of 28 atoms) and
on the vacancy site. From simple tight-binding
arguments for an unreconstructed vacancy, one
expects bound states and the most important
changes in the density of states to occur in the

and T, symmetries. In Si, we find only one
bound state within the fundamental gap; it has
T, symmetry (threefold degenerate) and lies at
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FIG. 1. The density of states and the change in the
density of states of A, and T2 symmetries. The curves
are broadened by 0.2 eV and the reference energy is
the top of the va1ence bands.

0.8 eV above valence bands, which is our refer-
ence energy. Since the crystal is neutral, this
state contains only two electrons. The changes
in the density of states for A., and 1', symmetries
are shown in Fig. 1. From the analytic proper-
ties of D(E) [Eq. (1)j, it can easily be shown that
the total change in the density of states in the
valence bands, for each symmetry, must inte-
grate to an integer. In the case of T, states, the
change is mostly negative and the integral is —6,
thereby compensating the T, bound state in the
gap. In the case of A. , states, a sharp resonance
is present at -0.6 eV. This resonance lies in an
energy region where the local density of states
of A. , symmetry is very small so that the reso-
nance is effectively a bound state. A second reso-
nance is present at —8.1 eV. Antiresonances
compensate so that the total integral is zero.

The contour plot in Fig. 2(a) shows that the total
change in the charge density (and therefore also
the corresponding potential) is localized almost
entirely within the cavity defined by the nearest
neighbors. Correspondingly, in our basis (which
includes LCAO on the first three shells) the total
change in the charge density integrates to its full
value —4.0 (as we have removed an atom with
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FIG. 2. Contours of constant electron density near
the vacancy (in atomic units) for (a) the total change in
the charge density (negative contours); (b) the T2 bound
state (see text); (c) the total charge density.

four valence electrons). Since the self-consistent
procedure requires knowledge of the potential
alone, this implies the adequacy of our basis for
this purpose. It is interesting to note that the in-
dividual states of the vacancy are quite extended.
In fact, our basis contains only 7(Po of the bound-
state wave function (i.e. , 1.4 electrons instead of
2). A contour plot of the contributions of the first
three shells to the T, bound state is shown in
Fig. 2(b). Similarly, the change in the density
of states in the valence bands integrates to —5.2
electrons for the T, symmetry (instead of —6),
and to —O.l for A, symmetry (instead of 0).
This indicates that the extented bound state, reso-
nances, and antiresonances screen each other in
a rather intriguing way, producing finally a very
localized potential, which in turn can easily be
expanded in a localized basis. It also clearly
demonstrates the advantage of the present formal-
ism. A cluster, which would adequately repre-

sent this infinite system, would need to contain
fully these extended states individually.

The total charge density around the vacancy is
shown in Fig 2. (c). We observe that all the bonds
in the crystal remain virtually unchanged, and
the dangling bonds remain pointing toward the
missing atom. The contour plots reveal that the
dangling bonds have a rather constant charge den-
sity near the atoms and extend appreciably into
the vacant site. The bound-state orbital [Fig.
2(b)], although considerably delocalized, has a
dangling-bond character.

Comparison of the present self-consistent re-
sults with those obtained earlier4 using the semi-
empirical tight-binding method (SETBM) reveals
the following: (1) The state-density changes are
strikingly similar. (2) The position of the bound
state in the gap (0.8 eV versus 0.3 eV found ear-
lier') is appreciably different and probably re-
flects not only self-consistency, but mainly the
effect of the more realistically broad conduction
bands of the present work. (3) The electron-den-
sity maps provided by the present work confirm
the basic assumption of the SETBM study, namely
that the Si-Si bonds near the vacancy are not
significantly affected. The present work also in-
dicates that the simple ' removal" model used in
Ref. 4 to describe the vacancy is fundamentally
correct.

Comparison with experiment is not yet possible
because the vacancy in Si is known" to induce a
significant lattice reconstruction, an effect which
has not been included in the present calculations.
The situation is comparable to free surfaces,
where the determination of reconstruction is still
an unsolved problem. However, the bound state
we find at 0.8 eV is consistent with experimental
observation" according to which the level for the
neutral vacancy is near the bottom of the gap af-
ter Jahn-Teller stabilization by about 1 eV."

In conclusion, we feel that the present work
goes a long way towards bringing the isolated-de-
fect problem to the level of sophistication which
characterizes contemporary studies of crystal
surfaces; we hope that theory will soon play an
important role in analyzing the wealth of experi-
mental data which already exists in this context.

It is a pleasure to thank S. G. Louie and A. R.
Williams for valuable discussions. This work is
supported in part by the U. S. Air Force Office
of Scientific Research under Contract No. F4S620-
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Pure, perfect, single-crystal ZrV2 does not undergo a structural phase transformation
but all other sample modifications, including tw~»ed single crystal, do transform (-100
K) from the cubic to a rhombohedral phase. All samples exhibit, in addition, an elec-
tronic instability {also -100 K). An anomaly in the ultrasonic velocity occurs at higher
temperatures (-150-180 K) for pure polycrystalline ZrV2 samples.

Since the discovery of martensitic transforma-
tions' in the high-T, superconductors V,Si and

Nb3Sn, it has b ecome increasingly clear that com-
pounds whose lattice and electronic structures
seem to favor superconductivity often exhibit lat-
tice softening and/or structural transformations
or, in extreme cases, exhibit a thermodynamic
instability of the crystal structure itself. ' ' In
order to elicit the relationship, if any exists, be-
tween these instabilities and high-temperature
superconductivity, the nature of the lattice transi-
tions themselves has become the focus of much of
the current research in this area. Among the
most studied examples of materials in which the
two phenomena coexist )A15, VRu, and MoRe al-
loys; and B1 compounds, e.g. , Refs. 1-3] no com-
mon characteristics connecting lattice instability
and high T, have emerged, either because of the
very different natures of the particular lattice
transitions or because the role of sample micro-

structure in the observed properties has not been
unr aveled.

ZrV„Hf V„and their pseudobinary alloys
(Hf„Zr, „V,) have the highest superconducting
transition temperatures~ among the cubic Laves-
phase compounds (C15) and have, in their arc-
cast modification, been shown to undergo lattice
transformations from the cubic structure to a
low-temperature phase of lower symmetry":
ZrV, transforms to a rhombohedral symmetry';
HfV„ to an orthorhombic crystal structure. ' The
similarities between these compounds and the
high-T, A15 alloys are striking in that, for those
low-temperature transport properties found to be
anomalous in the A15-structure group, there are
analogous abnormalities' ' observed for both
ZrV, and Hf V, . On the other hand, the origins of
the structural transformation in the two different
symmetry classes are clearly different since the
C15 transitions are unambiguous first-order
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