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The Schrodinger equation can be transformed
into well-known integral equations' for bound
states of energy E,

(2a)

g(~) =Q, c;p;(r).
The number and types of orbitals at each site are
to be chosen by convergence studies or by quan-
tum-chemical intuition, the intent being to satisfy

(5b)

The conditions (5) are satisfied when U(x)g(x)
= U(~)g(r) [cf. Zq. (4)]. By choosing (3) as the

%e have developed a method for solving the Green's-function equations describing an
isolated localized defect in an other@rise perfect crystal. It yields a charge density in
sufficient detail to allow recalculation of the potential and iteration to self-consistency.
The method is applied to the ideal (unrelaxed) vacancy in sQicon, in thb ionic-pseudopo-
tential, local-exchange-correlation approximation.

The need for a Green's-function method to + V, denotes the Hamiltonian of the perfect crys-
study the electronic structure of localized defects tal. Eigenfunctions of Ho are Bloch waves and the
is, if anything, greater today than it was when Green's function for the perfect crystal is
the method was first proposed. ' The limitations
of effective-mass theory preclude its use where g fd.~ N.(, )|I'.*(, ')

(l)the bound-state wave function is too localized. ' E -E„(a)
Cluster and defect-molecule calculations do not
give band edges relative to which the bound-
state energy can be referred, nor can they yield
the width or energy of resonances should these
occur. ' Periodically repeated large unit cells,
each containing one defect, ' introduce a spurious &(&) = f GE(&,~')U(~')l(~')d'~',
"defect band structure" with rather uncertain
bound-state energies and also discard the possi- and for scattering states (with E = E„(k,) +i-0 ),
biiity of obtaining resonance widths. On the other

( ) ( ) f ( ) ( ) ( )
3

( )hand, Green's-function formulations suffer from Bp Qt Z

none of these drawbacks, and have recently again To solve (2), we approximate g(x) as a linear
become popular. 4' combination of atomic orbitals (LCAO), each or-

Green's-function calculations have heretofore bital to be countered on an occupied atomic posi-
emphasized energies. The work being reported tion, and each occupied atomic position suppor
here represents significant progress in that we ing a number of orbitals:
have devised a scheme that yields a cha~ge den-
sity sufficiently precise to allow construction of
an impurity potential, and have used it to carry
out a fully converged self-consistent calculation.
The example chosen to illustrate the method is
the ideal, unreconstructed silicon vacancy. The
importance of this example is not that the results
are new.' Indeed, the essential qualitative be- No orbital lying totally beyond the range of the
havior of the Phase shifts p(E) [see below] and potential is thus needed, however, maximum or-
the correct physical interpretation of their me»- bital flexibility should be permitted where the
ing can be found in Ref. 5, while a, self-consis- overlap between U and g is expected to be large.
tent charge and potential, using well-trusted Consider a variational principle' for Eq. (2a),
pseudopotential and bulk-band-structure tech- namely
niques, has been given in Ref. 3. The impor-

5atance is rather as a demonstration that this new
method, which is both more practical and of A[/, E]:N[Q]/D[Q, E] =—1,
greater utility than the bulk-band-structure tech-

6anique, is of comparable accuracy in those mat-
ters for which the band-structure technique can D[g, E]

4*(~)U(~5 («')« ~ d d 5bA point defect is represented by a potential
Ugr) which tends to zero at large distance and is
described by [H, +U]g{r) =Er/r(~), where H, =--,'&'
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trial function Q we obtain

Z, [N, , -D,, (E)]c,=0,

N;, = fe;*(r)U(r)e, (r)«,
(7)

(8a.)

The matrix G .(E) is evaluated, using the B co-
efficients and the band energies E„(k), via the
Gilat-Raubenheimer -Kam technique for the

D, ,(E)
-=je;*(r)U(r)G (r, r') U(r')0, (r') ««' (8b. )

Equation (7) has no solution unless

det[YV;; -D;, (E)] =0.

which determines the energy E to second-order
accuracy in the wave-function error. No first-
order error occurs because our matrices N and
D each contain an additional factor of U(r) which
has not been heretofore employed.

To normalize the C;, we write Eq. (2a) in the
symbolic form g = GsUg. The normalization of
the bound state is then (P, () = (JUG» G&Ug) = 1.
But since GsGs = —dGs/dE, and since Ug is giv-
en by Eq. (4), the normalization condition is

g, ,c,*[dD, , (E)/dE'1 c, = —1.

Correct normalization of bound states extending
beyond the range of the potential is absolutely es-
sential for a self-consistent treatment.

For Eq. (2b), the functional to be varied is

Ay] =»[y] N[yJ+-DH, E], (11)

+[0] f4*(r=-)U(r)0.,(&. r)« (12)

The determinant of the matrix of the coefficients,

det~N-D(E)
~

=R(E)e'+-
describes the change in the energy density of
states via &n(E) = —(1/m)dp(E)/dE.

To this point, Ug, rather than g, has been the
unknown. But g can be evaluated, once U( is
known, via Eq. (2). To do so, we introduce a
second set of localized orbitals, infinite, period-
ic, and complete enough in every unit cell to ex-
pand each of the Bloch waves used in the Green's
function [Eq. (1)] and in Eq. (2b) as

g„(k, r) =ZB (n, k)& (r).

The coefficients B are fixed by a least-squares
fit, constrained to satisfy strict normalization.
Using this loca.l representation of the („(k,r), the
Green's function takes the form

Gz(r, r') =&@' (r)G (E)o *(r')

imaginary part and a Kramers-Kronig transfor-
mation for the real part. Although costly, cal-
culation of this matrix is a one-time expense,
and it can be stored and used for a variety of de-
fect calculations.

By using (13) in (2), we obtain each state g,. in
the form (,(r) =Zc„(j)4' (r). Coefficients C (j)
involve the elements G „.(E), the LCAO coef-
ficients, and also matrix elements of U(r) taken
between states @ (r) and 6;(r), in a straightfor-
ward manner.

It is necessary to sum the states so as to ob-
tain a charge density

p(r) = & I(;(r) I'=&4.*(r)~..~. (r),
OCCU Ply mm

j OCCU @Cd

c.*(j)c..(j). (14)

For the scattering-state contribution, the sum in

(14) is recast as an energy integral by inserting
f&[E-E„(k)]dE and then substituting, for the
LCAO coefficients, their algebraic solution which
introduces [N -D(E)] '

~ This latter factor con-
tains all of the resonant behavior, but can be in-
tegrated analytically whenever this behavior
threatens numerical difficulty. The matrix p
calculated via Eqs. (7)-(14) can be shown to sat-
isfy the Kohn-Majumdar' theorem: It is continu-
ous as a function of impurity potential even if a
bound state is split off from, or returns to, a
band edge as the potential varies. This too is es-
sential for a self-consistent treatment.

The impurity potential U(r) is evaluated numer-
ically using the same ionic pseudopotential and
the same Slater Xo. (o. =0.79) form' as wa, s used
in the self-consistent band-structure calculations
for g„(k,r). The electrostatic potential was ob-
tained from p(r) via Poisson's equation. Spatial
integrals involving the Green's function are per-
formed analytically, using s -, P -, and d -type
Gaussians (up to 18 per atom)' for orbitals P;(r)
and 4' (r) and fitting U(r) by a linear combination
of about twenty s- and P-type Ga,ussians. We
have experimented with up to twenty bands in the
Green's function, and up to four shells of atoms
centered about the vacancy. The results pre-
sented here were obtained with fifteen bands, two
shells of atoms, and 204 k points in each irre-
ducible ~ of the Brillouin zone. After iteration,
input and output potentials agree on average to
0.14 eV. Full use is made of the defect-crystal
point-group symmetry, 7'&, as described, for
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example, in Ref. 6. Each complete iteration in-
volves only evaluating matrix elements of U(x),
multiplications to produce D(E), and inversions
of N-D(E). This can typically be done at a small
fraction one-fifth of the cost of a supercell cal-
culation. '

Let us now describe the results and compare
them with those of other calculations of the ideal
neutral Si vacancy. In Fig. 1, we exhibit the Si
bulk density of states and the A, and &, phase
shifts, from which changes in the density of
states can be inferred. Our phase shifts are
qualitatively similar to those calculated non-
self-consistently in Ref. 5 to which we refer the
reader for a more detailed discussion. Quantita-
tively, however, our energies agree rather bet-
ter with those obtained in the supercell calcula-
tion. ' In our calculation, a sharp A, resonance
at —8.4 eV has a strength of 0.4 states and a
width of 0.1 eV. A broader A, resonance, having
a strength of about 0.6 states and a width of about
0.6 eV, is located at about —1.1 eV. Our &,
bound state appears as the abrupt drop in the &,
phase shift at 0.7 eV, slightly higher than the 0.5
e7 extracted by Louie e& H. ' from the defect band.
Scattering does change the spatial density associ-
ated with the other representations and, while
these changes have been included in our self-
consistent charge density, the phase shifts are
small and uninteresting.

The spatial charge density here has been evalu-
ated by filling each of the threefold-degenerate
&, states in the gap to one-third occupancy, re-
sulting in a system which is both electrically
neutral and invariant under Td. Such occupancy
is unstable with respect to symmetry-lowering
Jahn-Teller distortions, ' and so direct compari-
son with experiment is not yet appropriate. This
self-consistent charge density for the ideal neu-
tral vacancy is displayed in Fig. 2. The display
has been prepared by expanding the Bloch waves
in an infinite set of orbitals @ and retaining only
those orbitals which influence the density in the
neighborhood of the impurity. No information is
lost in this way but the display lacks the transla-
tional periodicity one would expect to see.

The calculated densities agree closely with
those calculated in Ref. 3. It is clear to us that
the supercells chosen in that work were large
enough to isolate the periodic defect potentials
but not large enough to remove the overlap of
the &, bound states, which are more extended
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FIG. l. Bulk density of states of Si and the A( and T2
phase shifts induced by a neutral vacancy.

FIG. 2. (a) Unperturbed, (b) perturbed, and (c) change
of charge density displayed in a (110) plane of atoms
containirg the vacancy. The values are given in units
of electrons per Si bulk unit cell.
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yields self-consistent densities and potentials
which agree with those calculated self-consistent-
ly via a bulk-band-structure calculation of a pe-
riodic vacancy array. Its real strength, however,
is that it produces bound-state energies, reso-
nance energies, and resonance widths that are
more reliable than, or inaccessible to, the peri-
odic-array technique and at less cost. The type
of information and the degree of accuracy made
available by this new technique will be needed to
study the effects of lattice distortions and their
coupling to the electronic system.

-60

FIG. 3. Spherical average of components of the self-
consistent vacancy potential and the total potential of
Ref. 3 (dashed line). Angular anisotropy of the poten-
tials is generally smaller than+ 10%.

than the potential.
In Fig. 3, we present the spherical average of

various components of the defect potential. The
total potential of Ref. 3 (dashed line) was evalu-
ated using a relatively low cutoff of Fourier
components which introduced spurious oscilla-
tions into the "supercell" ionic potential. We be-
lieve that this accounts for the difference between
the two calculated defect potentials.

In summary, this Green's-function technique
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We report the development of a method to calculate self-consistently the electronic
structure of neutral point defects in semiconductors. The method is an adaptation of the
original Koster-Slater idea. Calculations become feasible, practical, and accurate at the
level of current band-structure and surface calculations when an LCAO basis set is used
instead of Wannier functions. A detailed study of the isolated vacancy is Si is used to
illustrate the method.

Point defects (vacancies, interstitials, etc.)
and impurities in semiconductors are known to in-
troduce localized states with energy levels in the
fundamental gap. While shallow levels and some
moderately deep levels are adequately described
by effective-mass theory, ' the theoretical de-

scription of most deep levels, which play a domi-
nant role in determining many properties of elec-
tronic devices, has been one of the major out-
standing problems of semiconductor physics. A
large number of methods have been introduced
and used for a variety of defects and impurities. '
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