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This paper presents a field theory for the statistics of branched polymers and for the
gelation transition. The gelation transition with A&A& =m, where A& and A& are the
fugacities for polymer number and loop number, is shown to be in the same universality
class as the m-state Potts model. A new fixed point governing the statistics of branched
po1ymers in the dilute limit (Ap =0) in 6 —e dimensions with v =~2+0.092e and q = —0.073q
is located. An old result of Zimm and Stockmayer for the radius of gyration of a Gaus-
sion branched polymer is rederived.

The statistics of polymers in dilute and semidilute solutions is well described by the x = 0 limit of
the n-vector model in an external field. ' ' In addition, the statistics of percolating clusters on a lat-
tice with bonds (sites) occupied with probability P and vacant with probability 1 -P is described by the
one-state Potts model"; and the statistics of treelike percolation is described by the zero-state Potts
model. ' When bifunctional and polyfunctional units are allowed to interact in a polymeric solution, non-
linear polymers are produced. ' If the reaction is allowed to proceed far enough, an infinite molecule
is formed. This is the process of gelation. Alternatively, polyfunctional cross-linking units can be
added to semidilute or concentrated solutions of linear polymers. An infinite molecule forms at a
critical concentration of cross-linking units. This is the process of vulcanization. Both gelation and
vulcanization are percolation processes. ' The purpose of this note is to introduce a unified model
Hamiltonian which can describe the statistics of linear and nonlinear polymers in dilute and semi-
dilute solutions and in the vicinity of the gelation threshold. This model clarifies the relationship be-
tween gelation and vulcanization, and percolation.

The Hamiltonian we use is an extension of the n-vector model, partially motivated by previous work
on a generalized Hilhorst model. " It is defined via

R = f d x(2rp+s(V()'yu(g')'- Q
t wing» -—HQg»), (1)

f.i j
where P =+;,P; where i =1,.. ., n and j=l, .. ., m. In the rt-0 limit, there is a one-to-one corre-
spondence between graphs in a diagrammatic perturbation theory and polymeric configurations. Each
f-functional unit is marked by a factor top, and each endpoint by a factor H. A typical term in a Taylor
expansion for Z containing N& f-functional units, N„endpoints, and Np polymers will be proportional to
(+&tv& t)H"&m "p. Alternatively, with the use of the fundamental relationN„=2Np+Qy(f —2)Nt 2NL, ,
where NI. is the number of loops, this factor can be re-expressed as A& ~A& f&& ~, where

Ap -yygII', A~ =zv,II, A, =II '. (2)

Thus, the concentrations of monomers (bifunctional units), polymers, endpoints, f-functional units,
and loops, c, c~, c„, c&, and c~, can be obtained from the free-energy density E=-0 'lnZ, where 0
is the volume, via

Qjv QQ Qj' QQ
P P gp P tl g~ t f fBA 0 I I

Since H couples to Z,g;;, it is useful to introduce a complete set of orthonormal vectors e with e,'
=rn +'(1, 1,..., 1). 1e,' for & =1,. .., m-1 is, apart from a scale factor, the set of vectors used by
Zia and Wallace" to study the w. -state Potts model. Thus, we can write

m

l=p

Note that~;e; =0 for k =1,.. ., m —1. We now shift g;; to produce a Hamiltonian with no linear term
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by writing

(;,= ~m Q &, ,e, '+ qr;, ,

~here (q);;) =0. The Hamiltonian density 6' can be expressed as ~P),P& where k specifies the power of
We have

(4)

F,=2mrq'-Q —,mw~q ~um'q' )rdIQ

+4um 3-8 mf-1!
P, =-(&+4srm())rp*+-(Vrp)* — E

( Q *)Zp„*+4umQ(p, ')',

(5b)

(5c)

'+m u p +(0 )
lz =O

m

6'. -u(V ) —
4, w.

t;=0

where

Q wzq ', u, '=4uq, w, '=~~w&q~ ', A, , ~= Q ,e"...e, '~,
f—3 f)g 2=1

(5d)

(5e)

G»» (x, x') =G)((x, x')e, 'e, .'+G&(x, x')(5;, —e e;8).

U i gth f tth tX, , =Ofo 0, o
easily verify that G& (x, x') measures correla, -
tions between endpoints on a single polymer,
whereas G(((x, x') measures correlations between
endpoints on any polymers. Q is nonzero as long
as II is nonzero. It can be expressed as

(6)

separation $ between endpoints of a branched
polymer containing N monomer units. %e find

$' =- G„'(dG„/dq') ~, ,-N»'A '4

The average number of trifunctional units (N)
=(A, /Z&)(dZ&/dA, ), where Z„=j';„e "Z(r) dr, is
proportional to A, u'N, yielding $' N(Ng»'.
This has the same dependence onN and (V) as
the radius of gyration (rather than the average
endpoint separation) calculated by Zimm and
Stockmayer" and by de Gennes" using X rather
than Z to determine (N, ) via (cV3) = (A, /y „)(d)t)),/
dA, ), where X()(= f „e""X(r)-dr.

(2) u&0 and A~&0.—In this case, there is a
splitting between y, ' and y, ', l =1,..., m —1,
with y, becoming critical first. (y;; for i &1 is
also noncritica. l as long as any Aq & 0.) Thus to
study the critical properties of this case, a new
effective Hamiltonian for y, can be obtained by
tracing over y, ' and y;;, i &1. The resulting
Hamiltonian has exactly the same symmetry as
the m -state Potts model. ""Thus gelation zenith

A~ A, =m is in the same universality class as the
m state Potts model-, and critical exPonents for
gelaAon svill vary continuously 282, th ALAI, . If Ag

=0, there are no closed loops and the gelation
process is described by the zero-state Potts

Q=IIX-=As, "'X,

where y has well-defined large- and small-H
limits. It therefore follows that

mQ =mA) y2=A~X2, u, 0=4uq=4uAz,

w Qfwf H AI (Qf Afg )

With this information, we consider some special
cases of interest.

(1) u =0, Al, =0, A&
—0 for f& 3.—This is the

case of a Gaussian branched polymer with no

closed loops considered by Zimm and Stockmay-
er" and by de Gennes. " In this case, FI, —= 0 for
k - 3, and the problem can be solved exactly.
From Eqs. (6b) and (6c), we have

1
ry —2Ap' —1 =0

G~~ '=G~ '=G '=r —A3X+q'.

Defining GN(q) to be the Laplace transform of G,
f';„e""G(r,q)dr, we can calculate the average

and where we have not written down terms for k&4. The propagator for the field y»(x) can be decom-
posed into a part parallel to e,' and a part perpendicular to e
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model. We mill argue later that in most cases
of experimental interest, A&AL, = 1 implying that
gelation is in the same universality class as per-
colation in agreement with previous predictions. '

(3) u&0; A~ =0.—This corresponds to the dilute
limit of branched polymers (with or without
loops). From Eq. (5c), it is easy to see that y, '
and y, are simultaneously critical in this case,
whereas y;, for i ~ 2 is not. The critical proper-
ties of this limit are described by a new fixed
point in 6 —& dimensions. Recursion relations
immediately generate a new term in 5'„(m~'/
3!)v,(y, ')', that scales as Az, 'I'. Since we will
want the freedom to allow A&-0, we develop dif-
ferential" renormalization-group" recursion re-
lations in 6 —& dimensions" for x =K,(m,)', y
=K,~,u„and & =Ii,(, 'v,)~', where (2w)'E, =0„
the solid angle subtended by a sphere in six di-
mensions. We obtain

dx/dl =ex+ -,'x' - 20xy,

dy/d! = ~y + —,'xy —22y'+ —.'z',
(10a)

(10b)

d~/dl =&@+xi' —26y&+56y3/z —6xy2/z, (10c)

~ - &"- 3&y =2+ r ~ -W»4 ~ 1 5 20 (10d)

BI' 8 I' BI"
BK ' 8 BQ

~r
c~ = —m. ~~Q. (11)

am

In the mean-field limit, c„=2c~+F~&(f—2)c& so

with lnltial values xp =E.6A3 A6p $0 ~6QAp~ pp
=0. This set of equations has one stable fixed
point with x=0, y =0.055&, and z =0.1.48& with ex-
ponents g = —0.073& and v = 2 +0.092&. The stabil-
ity exponents" for this fixed point are ~„
= —0.090&, ~, = —&, and X2 = —1.2336&. There are
two other unstable fixed points with positive u.
Note that the critical properties of branched poly-
mers with and without loops in the dilute limit
are in the same universality class in 6 —& dimen-
sions.

The natural variables for the model presented
here are the fugacities for a number of polymers,
A~, number of f-functional units, A~, etc. The
most natural experimental variables are the den-
sities c, c~, ... . In polydisperse systems with
not too much dispersion, the relations in Eq. (4)
can be used to convert from fugacities to den-
sities. This is easily done in the mean-field
limit by performing a Legendre transform to
I'(Q) =E+mHQ and using 5', for E. Then

that cl. =0. Using Eqs. (11) and (5c), we obtain

G~ ' —c [c~ —,
'

Q&(f 1)(f 2)c&J ~ q2. (12)

When c& =0, this agrees with previous results"'
for polydisperse linear polymers. Gelation oc-
curs when c~ = ~~~&(f —1)(f—2)c&. This is to be
compared with the Flory result" relating the
fraction of reacted endgroups P =1 —[2c~+ (f
—2)cz] [2c+fez]"' to the fraction of endgroups on
f-functional units p =fc&f2c+fc&] at gelation via
pp[1-p(1-p)] '=(f -1) '. It is easy to verify
that Eq. (12) with only one value for f is equiva-
lent to Flory's result as long as c» c~ —c~. One
would expect both theories to give the same criti-
cal surface for gelation since they are both loop-
less theories. Since c =81'/&~ is expected to be
valid for c» c~ —c&, it is not surprising that the
two theories agree only in this limit. Equation
(12) provides an explicit verification that the cor-
relation length near the vulcanization threshold
is given by/'=N(&p/p, ) ', where N =2c/c„, the
average number of monomers per primary poly-
mer, and p, = z c„/e =N '. This relation was used
by de Gennes' to show that the critical region
for the vulcanization transition is small when N
is large.

We now return to the question of what value m
has in an actual gelation transition. In such a
transition, one begins with a concentration c of
bifunctional units which we denote by A-A. and a
concentration cz of f-functional units denoted by
A -A~, leading to a concentration N „'/Q = c„o= 2c
+fc~ of functional endgroups A. Chemical reac
tions between the functional groups are allowed to
proceed. Each reaction reduces the number of
endpoints (unreacted functional groups) by 2.
Thus after R reactions, N„=Qc„=Ac„'—2R. If
one assumes equal reactivity of all functional
groups, then there is no restriction on the num-
ber of loops or polymers produced. Using the
above and Eq. (2), one can replace A~ »q ~AI, &

by A~ "(A&A~) ~(A~A&)"~ in the partition sum.
Since the number of loops in the reaction is not
restricted, the sum should give all values of NI,
equal weight in the sum. This is accomplished
by setting A~A& =m=1. . Thus the gelation process
is in the same universality class as percolation.
In the vulcanization process, N, is fixed and four-
functional units are added. Here there is no re-
striction other than 2X& -N„—2N4 on N~. Thus
m must be unity in the product ~4"4H "m"~ in
order to weight all values of N& equally. By
choosing trifunctional units of the formA -R-D2
and bifunctional units A-B and allowing interac-
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tions to occur only between A. and B but. not be-
tween A and A or B and B, it is possible to re-
strict the number of loops to a maximum of one
per polymer (N~ ~N~). Thus, it is possible to
approach gelation described essentially by a zero-
state Potts model. If a number N, ' of trifunction-
al groups A.,-A-B are added to a solution of A-A-
B, and A. -B's, it is possible to increase the maxi-
mum number of allowed loops to N~+N, '. It may,
therefore, be possible to create a distribution of
molecules with well defined A&A between zero
and one by allowing reactions to proceed to a cer-
tain point, diluting the system to inhibit inter-
molecular interactions, allowing the reaction to
continue to another point, and then removing
some solvent to recreate a more concentrated
solution.
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The charge ratio of cosmic-ray muons with energies up to 1 TeV in the zenith-angle
range 68'-82' has been measured. The data clearly show an enhancement of the charge
ratio with increasing energy thus indicating a "normal" mass composition of galactic
cosmic rays.

The charge ratio of cosmic-ray muons at sea
level provides the only information on the mass
composition of the primary cosmic-ray flux, in
particular on the ratio of neutrons (bound in nu-
clei) to a,ll nucleons, ' in the energy range beyond
10" eV. The mass composition is an essential
tool to decide between different models for galac-
tic confinement of cosmic rays. '

Measurements have been performed in a mag-
netic spectrometer of Carstensen et al. ' and Cars-

tensen. The mean maximum momentum p
defined by pg= p, „o& (with g the angular deflec-
tion, v& the angular resolution, and p the mo-
mentum)' amounts to 750 GeV/c. The original
charge ratio R„at muon productions is modified
for low- and high-energy muons: Because the
viewing direction is towards east [75 + 7' zenith
angle and 288+ 20' azimuth angle], low-energy
positive muons run a longer path in the atmos-
phere than the negative muons by geomagnetic
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