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We present an accurate determination of the energy dispersion (E' vs k} and the first di-
rect determination of the energy-dependent lifetime I'(E} of well-defined excited Bloch
states in a crystal. Using angle-resolved photoemission for Cu(100), we find that the
lifetime broadening increases from I'=1.2 eV (6 x10 ' sec) to 1.8 eV (4 x10 ' sec) for
~& conduction-band states ranging 10.5 to 13.5 eV above the Fermi level. The measured
dispersion (-2% accuracy) shows a reduced effective mass (m*/m0=0. 90—0.94) which is
related to self-energy effects.

X-ray and ultraviolet photoelectron spectrosco-
py studies have yielded substantial information
about occupied energy bands —e.g. , densities of
state —in the last decade. Indeed, angle-re-
solved studies at low photon energies ~+ ~ 100
eV have recently yielded rather accurate energy
dispersions (E vs h) for occupied valence bands, ' '
and promise an even better future. However,
much less is known about the energy-band disper-
sions of empty conduction bands well above the
Fermi level EF . Usually, it has been necessary
to assume either that specific theoretical one-
electron models are valid' or that a simple near-
ly-free-electron-band picture is valid. '

Even less is known about the lifetime of elec-
trons in excited states well above EF. These life-
times are important since they determine such
basic quantities as the electron mean free path
(i.e., spatial escape depth) and the momentum
broadening 6&, which determines the limiting
momentum resolution of angle-resolved photo-
emission. ' The principal sources of information
about lifetimes have been escape-depth measure-

ments of electron attenuation through an over-
layer. ' Such measurements have determined en-
ergy-dependent mean free paths which are aver-
aged over many crystal directions, since poly-
crystalline samples have been used. Also, there
are often serious questions of inaccuracies due
to inhomogeneities —e.g. , island growth —be-
cause very thin overlayer films must be used. '

In this paper, we present an accurate deter-
mination of the energy dispersion E vs k as well
as a direct determination of the lifetime broaden-
ing &(E) for excited Bloch states in the lowest
empty conduction band along & in Cu. Using an-
gle-resolved normal photoemission from Cu(100)
with continuum synchrotron radiation, we have
directly determined the spectral distribution
[i.e. , Lorentzian distribution of width I'(E)] of
these excited Bloch states. For this method,
the only required assumption is that there exists
a smooth E-vs-k dispersion relation for the final
states involved. For energies between 10.5 and
13.5 eV above EF, we find that the energy broad-
ening I' increases from 1.2 eV FWHM (full width
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FIQ. 2. Interband (E,-A, ) transition intensity vs B~
for an initial energy E; =- 0.13 eV for normal emission
from Cu(100). The theoretical Lorentzian spectral
clenslty cllstrlbutlon ls discussed 1I1 tIle text.
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FIG. I. Angle-resolved energy distributions for nor-
IDal emlsslon from CU(100) SI10%'Ulg the onset of 4j
interband transitions. The vertical dotted lines depict
the interband transition intensity at an initial energy
E; =-0.13 eV.

at half-maximum) (lifetime of 6&&10 ' sec) to
1.8 eV (lifetime of 4&&10 " sec). Using measured
group velocities BE/Bk, the corresponding elec-

0

tron mean free path decreases from -15 A at
10.5 eV to -11 A at 13.5 eV. The experimentally
determined energy dispersion of the empty &,
conduction band is best described using a re-
duced effective mass (m*/m, =0.90-0.94) and is
found to be in excellent agreement with an X+
calculation' (n =0.77, A. =0.08) that was based on
a fit to Fermi-surface data, optical data, and
the position of the occupied Cu d bands.

Experimentally, we have used an angle-resolv-
ing CMA (cylindrical-mirror analyzer) double-
pass photoelectron spectrometer system with an
energy resolution of -150 meV (electrons+pho-
tons) angular a,cceptance of &0 =4' (full angle)
together with synchrotron radiation from the 240-
MeV storage ring at the Synchrotron Radiation
Center at the University of Wisconsin. Single
crystals of Cu(100) were prepared by Ar-ion

etching and annealing to - (700-800)'K in the usu-
al manner, checked for cleanliness using Auger
spectroscopy, and measured in a working vacuum
in the 10 "-Torr range.

A set of angle-resolved energy distribution
curves (AREDC's) for normal emission from
Cu(100) is presented in Fig. 1 which shows the
onset of direct interband transitions from the oc-
cupied &, s-p valence band just below EF into the.
lowest empty &, conduction band (b, , -. &, excited
with p polarization). The vertical dotted lines
show the intensity of the interband transition from
an initial energy E& = —0.13 eV into the empty
conduction band. This transition is superimposed
on a small smooth background of "indirect" tran-
sitions (e.g. , surface emission, etc.). The II&@-de-

pendent spectral intensity for interband transi-
tions from this initial state into the empty &, con-
duction band is shown in Fig. 2. As we will show,
the width I' =1.2 eV (FWHM) and center @co,
=10.6 eV) of this curve directly give the lifetime
and final-state energy of the ~, conduction band
at the initial-state momentum k;. This can be
shown using a three-step model for angle-re-
solved photoemission, which is valid if the elec-
tron mean free path is long compared to the in-
terlayer spacing. For this case, the emission in-
tensity N(E&, co) can be written as the product of
the excitation probability times the escape proba-
bility times the analyzer acceptance":

where the first term contains the Lorentizian spectral density function of the final state with a lifetime
I (u) + E;,) and interband matrix element p&;, I(d, = E,(k, ) —E, (k, ) is the interband transition energy, a (c())
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is the optical absorption coefficient, l is the electron mean free path, 8 is the ref lectivity, (d+E& —p
is proportional to the k-space acceptance solid angle of the spectrometer, and p =4.8 eV is the Cu(100)
work function. Using a two-orthogonalized-plane-wave (OPW) approximation for our simple case, we
can approximate N(E&, &) as"

(2)

where V», is the two-OPW pseudopotential (its
magnitude is irrelevant to our analysis). Exam-
ination of Eq. (2) in view of the data in Fig. 2 in-
dicates that we can simply write

1(E )/2
(K(u -5(u )'+ [F(Ey)/2]' ' (3)

—16

O.IO—

l2

an expression which can be used to determine
the lifetime & with an accuracy of ( 10% and the
transition energy +~, with an accuracy of - 1/o.
Equation (3) is plotted in Fig. 2 for@(d, =10.6 eV
and r =1.2 eV and is seen to describe the over-
all line shape [ the asymmetry can be understood
using Eq. (2)]. For this transition with E, =-0.13
eV, the corresponding momentum k~ is accurately
given' from the known Fermi surface, i.e. , k(/
kB oo 0 82+0 01 A- where k~ ioo 1 74 A
for Cu. Thus, we have directly determined the
lifetime ~ =1.2 eV and energy Ef @(do Ef =10.5
eV for the &, conduction band at a reduced-zone
momentum of k/k qz,

'" =0.82."
Using the data in Fig. 1, together with similar

data at higher @(u's for several initial states E&,
we have determined the energy-dependent life-
time broadening I'(E) shown in Fig. 3. Also
shown in Fig. 3 are the corresponding energy-de-
pendent mean free path l(E) and momentum broad-
ening (FWHM), hk=-1/l, where l(E) is deter-
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mined by the relation /(E) =(BE/Sk)(1/1") with the
experimental group velocity 8E/&(A) =17.2+ 0.4
eV ~ (to be discussed). "

In comparison with past work for the energy
range E ( 40 eV, the only relevant measurements
for noble metals appear to be electron transmis-
sion measurements for Au and Cu and photoemis-
sion escape-depth measurements for Ag. ' Our
results for Cu(100) are consistent both in magni-
tude and energy dependence with these previous
measurements. Over the limited energy range
of our measurements, &(E) can be described by
a power law 1 ~ E with P =1.3; this is consistent
with an estimate based on the random-k approxi-
mation with a free-electron model for s-P band
e -e scattering. '

We have also determined the E-vs-k relation
for final states along the 6 line above h~o=10. 6
eV as shown in Fig. 4. Here normal-emission
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FIG. 3. Experimental energy-dependent energy width
lifetime) I'(E), electron mean free path/(E), and mo-
mentum broadening A&(E) for 6& conduction-band states
of Cu.
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FIG. 4. Experimental E-vs-4 dispersion for the 2
&

conduction band of Cu and comparison with three theo-
retical models.
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AREDC's have been used to determine the ener-
gies, and the corresponding momenta are accu-
rately given by the initial-state dispersion along
6 near EF, which is known from analyses"'" of
the Fermi-surface data together with Cu d-band
photoemission (in Fig. 4, the Xa ' and interpola-
tion-scheme" calculations agree within +0.1 eV
and +0.01 A ' for these b,, states). In Fig. 4,
three theoretical models are compared with ex-
periments: (1) a self-consistent Xo.'calculation'
with a self-energy correction A = 0.08 which was
fitted to the Fermi surface, optical data, the @-
band position, and angle-averaged photoemission
data; (2) a mixed-basis (s+0) interpolation-
scheme calculation" which was fitted to Burkick's
APW calculation; and (3) a free-electron model
which was shifted to pass through the Fermi en-

ergyy

at the known value k F
""'/k ~z""' = 0.82.

Comparison of experiment with the Xn calcula-
tion shows excellent agreement better than
might have been expected since accurate conduc-
tion-band data were not available. Also, the
agreement between our experimental X, critical
point (7.9 eV; determined from X, -X, transi-
tions) and the calculated X, point is excellent.
Comparison with the interpolation-scheme mod-
el" shows that the calculated band lies too low in
energy. This is consistent with the Xn calcula-
tion, which gives a similar result if the -8o/o re-
duction in effective mass (i.e. , self-energy pa-
rameter A. = 0.08} is omitted. Comparison with
the free-electron bands shows a large discrepan-
cy; this is expected since important s-d orthog-
onalization and pseudopotential effects are not
accounted for.

The experimental average group velocity is
BE/B(hk} = 17.2 +0.4 eV A/h for energies between
ll and 14 eV above E F. The group velocity for
the free-electron model with k =0.75k Bz

' is
BE/&(%}=7.62hk/m*; if this is equated to experi-
ment, one obtains an effective mass of m* ~0.95.
The use of a two-OPW model with a further re-
duced effective mass would improve the fit of E
vs 0 to experiment. In summary, comparison of
experiment with such two-OP& models fit to ex-
periment as well as with the Xo. calculation indi-
cates that an effective mass m*/m, = 0.90-0.94

is needed to fit the 6, conduction band. This val-
ue is significantly less than unity and indicates
that self-energy effects exist. '
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