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no experiments in the simple metals have been
reported in which a saturating magnetoresistivity
has been observed. The question of whether the
source of the anomalies is intrinsic or extrinsic
has not been resolved. Noting that the linear
magnetoresistance of the simple metals varies
unpredictably with sample handling and fabrica-
tion techniques, several authors" suggested that
sample inhomogeneities (voids, inclusions, grain
boundaries, dislocations, etc. ) may be respon-
sible for the anomalous behavior. Fletcher has
also argued in a different manner for an extrin-
sic cause. ' A recent Letter by Beers e~ a~. ' de-
scribes a measurement of the electrical mag-
netoresistance of a pure indium specimen into
which cylindrical voids were introduced. Beers
et al. find a large enhancement in the linear elec-
trical magnetoresistance due to the presence of

The influence of cylindrical voids on the thermal magnetoresistance of a model metal
is calculated. In the absence of lattice thermal conduction a linear thermal magnetoresis-
tivity results from the presence of the voids in a manner similar to the electrical mag-
netoresistivity. However, when the lattice conductivity is present, marked deviations
from linearity occur.

The question of the anomalous magnetoresis-
tances of the simple metals is considered to be
one of the great unsolved problems of metals
physics. After nearly 50 years of research, the
source of these anomalies is still unknown. The
semiclassical magnetoresistance theory of Lif-
shitz, Azbel', and Kagnaov' predicts that closed-
orbit, uncompensated metals should have elec-
trical and thermal magnetoresistivities which
saturate in strong fields. However, in many of
the simple metals2 ~ (the a,lkalisa and metals
such as indium3 and aluminum~) a linear trans-
verse electrical magnetoresistivity is observed.
In potassium, the archetypical simple, metal, the
transverse thermal magnetoresistance contains
terms linear and quadratic in the field (similar-
ly, the other magnetotransport coefficients show
unexplained behavior). In fact, to our knowledge,
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the voids.
In this Letter we report a calculation of the

thermal magnetoresistance of a model metal con-
taining cylindrical voids, including explicitly the
effects of lattice thermal conductivity. Our re-
sults demonstrate that the presence of voids does
not enhance the quadratic term' and that a non-
zero lattice thermal conductivity substantially
~educes the effects of the voids in creating a
linear magnetoresistivity, producing, also, a
marked deviation from linearity at high fields.
Thus, the presence of the lattice conductivity re-
sults in large differences in the effects of voids
on the electrical and thermal magnetoresistiv-
ities. This result can be used to determine the
role of sample inhomogeneities in the magneto-
resistance anomalies of the simple metals.

A number of theories have been proposed relat-
ing the linear electrical magnetoresistivity to
various types of sample inhomogeneities. Our
calculations are similar to those of Sampsell and
Garland' and of Stroud and Pan. ' They calculate
the effective electrical magnetoresistance of a
free-electron metal within which are large-scale
voids (d &&, where d is a typical void dimension
and f is the electron mean free path). The effects
of a variety of shapes of voids are calculable,
but, for simple comparison with the work of
Sampsell and Garland' and of Beers et al. ,' in
this Letter we only discuss cylindrical voids
whose axes lie perpendicular to H and Jz, the
thermal current. In our calculations we have
used both the boundary-value approach of Samp-
sell and Garland' and the effective-medium ap-
proach of Stroud and Pan. ' We present here the
boundary-value approach because we feel this
method displayes the physics in an obvious man-
ner.

For the calculation, we make the basic assump-
tion that the metal is described by a free-elec-
tron model and, furthermore, that there is a
field-independent lattice conductivity present.
We also assume that the electrons are in the
hydrodynamic limit and that the temperature is
sufficiently low that radiation effects may be
neglected. This ensures the same boundary con-
ditions for the electrical and thermal currents
and potentials.

Since there are no sources of heat in the speci-
men, we find that in the presence of a magnetic
field the temperature satisfies the equation

where &, is the free-electron thermal conduc-
tivity in zero field, & is the ratio of the lattice
thermal conductivity to the free-electron thermal
conductivity, P =&,&,h, y =(1+P') ', ~, is the
cyclotron frequency, and &,h is the mean time
between collisions catastrophic to thermal con-
ductivity. While & does not satisfy Laplace's
equation in the original coordinate system, it is
always possible to find a coordinate system in
which it does. For the problem at hand, elliptic
cylindrical coordinates do the job. The tempera-
ture distribution, consistent with the boundary
conditions that the thermal current is injected
uniformly at a great distance from the void and
perpendicular to the field, takes the form

& = —{&o'/~,)@cosh' co. s~ +&y

+ C cose exp[ —(p. —po)] j. (3)

In this equation,

(1 p)(1.P)
(1+p) +p 1+5

P(1+P')
(1 a+)' P+' '

C =&.[r(1+&)(1+p)]

o=~r ',
(6)

(7)

and A, is the radius of the void, IL(. and (9 are the
elliptic cylindrical coordinates, and J@ is the
limiting value of the injected current. This
yields the following current:

1/2

Jq =Jq 1 exp p Qo +Y t

u'a

&,' =Z, 'exp[ —(p —q,)] A'Y,0

1/2
Jq' = —Jz'exp(p. ,) 1

Y sin8 cos8,
}f

(10)

This equation obtains for inhomogeneous and
anisotropic conductivity tensor s.

For the model described above, the conductiv-
ity tensor has the form

r+& pr
-py y+&

0 0 1+6

X =sjnh p. cos20 —cosh p.sin 0
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F ' = sinh'p. cos'0+ cosh'p, sin'~. (13)
5 =10

In the limit ~-0, -the foregoing expressions re-
duce to those of Sampsell and Garland. We should
also mention that the formalism described above
can deal effectively with problems considerably
more complicated than the one discussed here.
Equation (1), combined with a choice of tc", dis-
plays the physics of the model in as perspicuous
a manner as possible. We also point out that if
&" does not depend on the coordinates, i.e.,
v "&;~,T =0, then 7" is determined solely by the
symmetric part of ~". Antisymmetric modifica-
tions of w" do not affect the temperature distri-
bution. The symmetric part of &" may always be
diagonalized, and a rescaling of the coordinates
reduces the equation for the temperature to La-
place's equation. This was the result used above.

Once the thermal currents and fields have been
obtained, it is a straightforward matter to get
the effective thermal conductivity. This is ob-
tained by numerically integrating the entropy
production over the volume of the specimen, or,
directly, by using the method of Stroud and Pan.
Some insight into the physics may be gained from
Fig. 1, a plot of the entropy production as a func-
tion of the horizontal (x) distance from the void
at a height & =A,. We show the results for P

=up, &=100, for various values of &. For & =0
the results are identical to those obtained by
Sampsell and Garland (Ref. 6, Fig. 3), these re-
sults have been normalized to unit entropy pro-
duction far from the void. The interpretation of
the & =0 curve is given by Sampsell and Qarland;
the large peaks in the "dissipation" in the void
"shadow" result from the large current sheets
which form there when , T,h) 1. The effect of a
nonzero & is twofold: The asymptotic limit of
the entropy production increases (at large P and
JL(,, &""-.&~, and the fields and currents are uni-
form) and the height of the peaks is diminished.
For sufficiently large & or P, the peaks "disap-
pear. " The conductivity tensor has become field
independent and the zero-field results obtain,
albeit with a much smaller conductivity.

Since most of the entropy production involved
, in the linear magnetoresistance comes from the

two peaks in the void shadow, we expect substan-
tial deviations from linearity to occur at high P.
This is indeed the case, as is shown in Fig. 2, a
plot of gw/fW J,„„,vs tu, ~, t, for various &. Here
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FIG. 1. Volume entropy production —J@.T(T ),

plotted along a line parallel to the x axis which touches
the cylinder at Z =AD. The curves are for various val-
ues of 6, the relative lattice thermal conductivity and
are all for ~,T,h

——100. The peak values are indicated
near the right-hand lobe.

we have

~w w„„(a)—w„. ..,,~"'

fWo,„„, W(H =0)E

where W„&,(H) is the effective thermal resistivity
as determined from a numerical calculation or
directly from the effective-medium theory of
Stroud and Pan. ~„,„;d is the thermal resis-
tance of the system without the voids, and f is
the volume fraction of voids. Thus, only the re-
sistivity due to the presence of the voids will ap-
pear in Fig. 2. For & =0, we again reproduce the
results of Sampsell and Garland, that is, [&W/

fW, ],„„,is linear in ~,7',q, with a Kohler slope
1.00f, for &u,T,h&10. However, for nonzero &

the results show marked deviations from linear-
ity. For the various ~'s, the deviation begins at
that field at which the lattice conductivity becomes
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sive.
Finally, we see that in contrast to the elec-

trical case, the introduction of large voids into
a metal does not result in a linear term in the
thermal magnetoresistance, at least in strong
fields. Clearly these predictions allow for a
very positive experimental test of the void hy-
pothesis; we are planning such an experiment.

[

01010 100 100
T

FIG. 2. The "extra" thermal resistivity (see text)
vs ~,v, h for various 5.

an appreciable fraction of the total conductivity,
i.e., when & is a significant fraction of y. %e
present results for w, &,h up to 300; this covers
the range of ~,&@ readily accessible in many of
the alkali metals. As , &,q-, the curves flatten
with [b.W/f W,],„„,~ 5 '

~

There are very little high-field limit magneto-
resistivity data available to check these predic-
tions. Potassium, as mentioned above, has a
transverse thermal magnetoresistivity which con-
tains terms linear and quadratic in field. The
linear term appears to persist to values of &,7,h

of nearly 350. Since ~ for potassium is at least
3&& 10 ~, deviations from linearity should be seen
easily. However, there is currently considerable
controversy concerning the origin of the quadrat-
ic term and the magnitude of the lattice conduc-
tivity in potassium, "'"the data are not conclu-
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